Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
A Deep Learning Approach to Detectin...
~
Wilhelm, Patrick T.
Linked to FindBook
Google Book
Amazon
博客來
A Deep Learning Approach to Detecting Dysphagia in Videofluoroscopy.
Record Type:
Electronic resources : Monograph/item
Title/Author:
A Deep Learning Approach to Detecting Dysphagia in Videofluoroscopy./
Author:
Wilhelm, Patrick T.
Published:
Ann Arbor : ProQuest Dissertations & Theses, : 2020,
Description:
52 p.
Notes:
Source: Masters Abstracts International, Volume: 82-02.
Contained By:
Masters Abstracts International82-02.
Subject:
Electrical engineering. -
Online resource:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27963852
ISBN:
9798662480827
A Deep Learning Approach to Detecting Dysphagia in Videofluoroscopy.
Wilhelm, Patrick T.
A Deep Learning Approach to Detecting Dysphagia in Videofluoroscopy.
- Ann Arbor : ProQuest Dissertations & Theses, 2020 - 52 p.
Source: Masters Abstracts International, Volume: 82-02.
Thesis (M.S.)--The University of Iowa, 2020.
This item must not be sold to any third party vendors.
Dysphagia, or a disorder classified by difficulty swallowing, is a severe health problem that reduces the quality of life of those affected. The standard method to diagnose dysphagia is the X-ray video fluoroscopic swallowing exam (VFSE). In this paper, we investigate the use of deep learning networks to classify VFSE as normal or abnormal. We have based our network on a long term recurrent convolutional network (LRCN). 1154 VFSE were available to train the network. Using 10-fold cross-validation, the accuracy of classification was 85%, and the area under the ROC curve was 0.89. This work shows the promise of using deep learning networks as a screening tool to detect dysphagia in VFSE.
ISBN: 9798662480827Subjects--Topical Terms:
649834
Electrical engineering.
Subjects--Index Terms:
deep learning
A Deep Learning Approach to Detecting Dysphagia in Videofluoroscopy.
LDR
:01750nmm a2200349 4500
001
2281224
005
20210910100645.5
008
220723s2020 ||||||||||||||||| ||eng d
020
$a
9798662480827
035
$a
(MiAaPQ)AAI27963852
035
$a
AAI27963852
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Wilhelm, Patrick T.
$3
3559812
245
1 0
$a
A Deep Learning Approach to Detecting Dysphagia in Videofluoroscopy.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2020
300
$a
52 p.
500
$a
Source: Masters Abstracts International, Volume: 82-02.
500
$a
Advisor: Reinhardt, Joseph M.
502
$a
Thesis (M.S.)--The University of Iowa, 2020.
506
$a
This item must not be sold to any third party vendors.
520
$a
Dysphagia, or a disorder classified by difficulty swallowing, is a severe health problem that reduces the quality of life of those affected. The standard method to diagnose dysphagia is the X-ray video fluoroscopic swallowing exam (VFSE). In this paper, we investigate the use of deep learning networks to classify VFSE as normal or abnormal. We have based our network on a long term recurrent convolutional network (LRCN). 1154 VFSE were available to train the network. Using 10-fold cross-validation, the accuracy of classification was 85%, and the area under the ROC curve was 0.89. This work shows the promise of using deep learning networks as a screening tool to detect dysphagia in VFSE.
590
$a
School code: 0096.
650
4
$a
Electrical engineering.
$3
649834
650
4
$a
Artificial intelligence.
$3
516317
650
4
$a
Medical imaging.
$3
3172799
653
$a
deep learning
653
$a
dysphagia
653
$a
videofluoroscopy
690
$a
0544
690
$a
0800
690
$a
0574
710
2
$a
The University of Iowa.
$b
Electrical and Computer Engineering.
$3
1018779
773
0
$t
Masters Abstracts International
$g
82-02.
790
$a
0096
791
$a
M.S.
792
$a
2020
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27963852
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9432957
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login