語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The Use of Nutritional Programming a...
~
Molinari, Giovanni.
FindBook
Google Book
Amazon
博客來
The Use of Nutritional Programming and Dipeptide Supplementation as a Means of Mitigating the Negative Effects of Plant Protein and Improving the Growth of Fish Fed with Plant-Based Diets.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
The Use of Nutritional Programming and Dipeptide Supplementation as a Means of Mitigating the Negative Effects of Plant Protein and Improving the Growth of Fish Fed with Plant-Based Diets./
作者:
Molinari, Giovanni.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2020,
面頁冊數:
98 p.
附註:
Source: Masters Abstracts International, Volume: 82-04.
Contained By:
Masters Abstracts International82-04.
標題:
Aquatic sciences. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28003018
ISBN:
9798678160355
The Use of Nutritional Programming and Dipeptide Supplementation as a Means of Mitigating the Negative Effects of Plant Protein and Improving the Growth of Fish Fed with Plant-Based Diets.
Molinari, Giovanni.
The Use of Nutritional Programming and Dipeptide Supplementation as a Means of Mitigating the Negative Effects of Plant Protein and Improving the Growth of Fish Fed with Plant-Based Diets.
- Ann Arbor : ProQuest Dissertations & Theses, 2020 - 98 p.
Source: Masters Abstracts International, Volume: 82-04.
Thesis (M.S.)--Southern Illinois University at Carbondale, 2020.
This item must not be sold to any third party vendors.
Currently aquaculture is the largest growing food sector in the world, however, its future growth is limited by its heavy reliance on fishmeal (FM). Overfishing of wild marine fish stocks used for FM is putting too much pressure on the stocks, making FM unsustainable as a dominant protein source as aquaculture continues to grow. Plant proteins (PP) are an ideal alternative to FM because of their wide availability and relatively low cost. Soybean meal (SBM) is the most commonly used PP in aquaculture, but its inclusion in feeds is limited due to reduced digestibility and the presence of antinutritional factors ultimately leading to a reduced growth performance of fish that are fed with the SBM-based diet. Therefore, the goal of this thesis was to mitigate the negative effects of PP and improve the growth of fish fed with a PP-based diet, utilizing SBM as our PP in feeds. Three feeding trials were conducted to test the efficacy of 3 approaches towards improving the use of PP in fish.The first trial (Chapter 2), tested the effect of nutritional programming (NP) on the utilization of SBM in zebrafish (Danio rerio). NP is the theory that an organism can be 'programmed' to better utilize a dietary component by being exposed to that component in its early life stages. This study also tested the effect of NP through the broodstock by exposing the broodstock to SBM for 4 weeks prior to breeding. In addition, a combination of both programming techniques was also tested. The results found that neither of the programming techniques had a significant effect on the growth performance of the zebrafish. Among the two groups from the programmed broodstock, the group that also received early stage NP had a significantly higher expression of PepT1, a di- and tri- peptide transporter. Also, the dual programmed group had the highest length-to-width ratio of the distal villi among groups that were fed SBM, which signifies an increase in surface area for nutrient absorption in the intestine. The findings from this study suggest that early stage NP may increase the absorption of nutrient from PP-based feeds within the intestine.The second feeding trial (Chapter 3), utilized the supplementation of health-promoting dipeptides to improve the use of SBM-based feeds for zebrafish. The three dipeptides used in this study were alanyl-glutamine, carnosine, and anserine. The five groups in this study consisted of three groups receiving an SBM-based diet with one of the dipeptides supplemented into it, a (-) Control group receiving a non-supplemented SBM-based diet, and a (+) Control group receiving a FM-based diet. Both the alanyl-glutamine and carnosine supplemented groups experienced a significantly higher weight gain compared to the (-) Control group. In addition, the alanyl-glutamine supplemented group had a significantly higher length-to-width ratio of the intestinal villi and, had a numerically higher expression of both nutrient absorption genes measured, PepT1 and fabp2, compared to the (-) Control group. This finding suggests that the supplementation of alanyl-glutamine into SBM-based diets may improve the intestinal absorptive capacity of the fish fed with the SBM. The results from this study also support the use of both alanyl-glutamine and carnosine supplementation as a means of improving the growth performance of fish fed with a SBM-based diet.The third feeding trial (Chapter 4), was conducted on largemouth bass (LMB) (Micropterus salmoides). This study also focused on NP as a means of improving the utilization of dietary SBM, similar to Chapter 2. In this study, live feed was used as a vector to program the larval LMB to SBM. The programmed group in this study received Artemia nauplii that were enriched with a SBM solution, during the larval stage. The bass were then fed with a FM-diet for 7 weeks, before being reintroduced to SBM for the final 6 weeks of the study (PP-Challenge). The programmed LMB experienced a significantly higher weight gain compared to the non-programmed fish also undergoing the PP-Challenge, and achieved a weight gain similar to that of the LMB that were being fed with an FM-diet. In addition, the programmed LMB had significantly longer distal villi and a higher length-to-width ratio of the villi, compared to the non-programmed group. The findings from this study support the use of live feed as a vector for NP and improving the growth performance of a carnivorous aquaculture species fed with a SBM-based diet.The overall findings from these studies suggest that both NP and dipeptide supplementation are feasible means of improving the utilization of SBM in fish. The mechanism behind NP seems to lie in the intestine. In both zebrafish and LMB, NP was found to reduce the inflammatory impact on the intestine and increase the surface area for absorption of the intestinal villi. The supplementation of alanyl-glutamine had similar effects on the intestine as NP and improved the growth performance of zebrafish. The observations from these studies seem to point to mitigating the negative effects of SBM on the intestine as the key to improving the growth performance of fish fed with a SBM-based diet.
ISBN: 9798678160355Subjects--Topical Terms:
3174300
Aquatic sciences.
Subjects--Index Terms:
Aquaculture
The Use of Nutritional Programming and Dipeptide Supplementation as a Means of Mitigating the Negative Effects of Plant Protein and Improving the Growth of Fish Fed with Plant-Based Diets.
LDR
:06504nmm a2200385 4500
001
2280247
005
20210830065523.5
008
220723s2020 ||||||||||||||||| ||eng d
020
$a
9798678160355
035
$a
(MiAaPQ)AAI28003018
035
$a
AAI28003018
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Molinari, Giovanni.
$3
3558754
245
1 4
$a
The Use of Nutritional Programming and Dipeptide Supplementation as a Means of Mitigating the Negative Effects of Plant Protein and Improving the Growth of Fish Fed with Plant-Based Diets.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2020
300
$a
98 p.
500
$a
Source: Masters Abstracts International, Volume: 82-04.
500
$a
Advisor: Kwasek, Karolina.
502
$a
Thesis (M.S.)--Southern Illinois University at Carbondale, 2020.
506
$a
This item must not be sold to any third party vendors.
520
$a
Currently aquaculture is the largest growing food sector in the world, however, its future growth is limited by its heavy reliance on fishmeal (FM). Overfishing of wild marine fish stocks used for FM is putting too much pressure on the stocks, making FM unsustainable as a dominant protein source as aquaculture continues to grow. Plant proteins (PP) are an ideal alternative to FM because of their wide availability and relatively low cost. Soybean meal (SBM) is the most commonly used PP in aquaculture, but its inclusion in feeds is limited due to reduced digestibility and the presence of antinutritional factors ultimately leading to a reduced growth performance of fish that are fed with the SBM-based diet. Therefore, the goal of this thesis was to mitigate the negative effects of PP and improve the growth of fish fed with a PP-based diet, utilizing SBM as our PP in feeds. Three feeding trials were conducted to test the efficacy of 3 approaches towards improving the use of PP in fish.The first trial (Chapter 2), tested the effect of nutritional programming (NP) on the utilization of SBM in zebrafish (Danio rerio). NP is the theory that an organism can be 'programmed' to better utilize a dietary component by being exposed to that component in its early life stages. This study also tested the effect of NP through the broodstock by exposing the broodstock to SBM for 4 weeks prior to breeding. In addition, a combination of both programming techniques was also tested. The results found that neither of the programming techniques had a significant effect on the growth performance of the zebrafish. Among the two groups from the programmed broodstock, the group that also received early stage NP had a significantly higher expression of PepT1, a di- and tri- peptide transporter. Also, the dual programmed group had the highest length-to-width ratio of the distal villi among groups that were fed SBM, which signifies an increase in surface area for nutrient absorption in the intestine. The findings from this study suggest that early stage NP may increase the absorption of nutrient from PP-based feeds within the intestine.The second feeding trial (Chapter 3), utilized the supplementation of health-promoting dipeptides to improve the use of SBM-based feeds for zebrafish. The three dipeptides used in this study were alanyl-glutamine, carnosine, and anserine. The five groups in this study consisted of three groups receiving an SBM-based diet with one of the dipeptides supplemented into it, a (-) Control group receiving a non-supplemented SBM-based diet, and a (+) Control group receiving a FM-based diet. Both the alanyl-glutamine and carnosine supplemented groups experienced a significantly higher weight gain compared to the (-) Control group. In addition, the alanyl-glutamine supplemented group had a significantly higher length-to-width ratio of the intestinal villi and, had a numerically higher expression of both nutrient absorption genes measured, PepT1 and fabp2, compared to the (-) Control group. This finding suggests that the supplementation of alanyl-glutamine into SBM-based diets may improve the intestinal absorptive capacity of the fish fed with the SBM. The results from this study also support the use of both alanyl-glutamine and carnosine supplementation as a means of improving the growth performance of fish fed with a SBM-based diet.The third feeding trial (Chapter 4), was conducted on largemouth bass (LMB) (Micropterus salmoides). This study also focused on NP as a means of improving the utilization of dietary SBM, similar to Chapter 2. In this study, live feed was used as a vector to program the larval LMB to SBM. The programmed group in this study received Artemia nauplii that were enriched with a SBM solution, during the larval stage. The bass were then fed with a FM-diet for 7 weeks, before being reintroduced to SBM for the final 6 weeks of the study (PP-Challenge). The programmed LMB experienced a significantly higher weight gain compared to the non-programmed fish also undergoing the PP-Challenge, and achieved a weight gain similar to that of the LMB that were being fed with an FM-diet. In addition, the programmed LMB had significantly longer distal villi and a higher length-to-width ratio of the villi, compared to the non-programmed group. The findings from this study support the use of live feed as a vector for NP and improving the growth performance of a carnivorous aquaculture species fed with a SBM-based diet.The overall findings from these studies suggest that both NP and dipeptide supplementation are feasible means of improving the utilization of SBM in fish. The mechanism behind NP seems to lie in the intestine. In both zebrafish and LMB, NP was found to reduce the inflammatory impact on the intestine and increase the surface area for absorption of the intestinal villi. The supplementation of alanyl-glutamine had similar effects on the intestine as NP and improved the growth performance of zebrafish. The observations from these studies seem to point to mitigating the negative effects of SBM on the intestine as the key to improving the growth performance of fish fed with a SBM-based diet.
590
$a
School code: 0209.
650
4
$a
Aquatic sciences.
$3
3174300
650
4
$a
Zoology.
$3
518878
650
4
$a
Nutrition.
$3
517777
653
$a
Aquaculture
653
$a
Dipeptide supplementation
653
$a
Intestinal health
653
$a
Live feed enrichment
653
$a
Nutritional programming
653
$a
Plant protein
690
$a
0792
690
$a
0472
690
$a
0570
710
2
$a
Southern Illinois University at Carbondale.
$b
Zoology.
$3
1030339
773
0
$t
Masters Abstracts International
$g
82-04.
790
$a
0209
791
$a
M.S.
792
$a
2020
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28003018
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9431980
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入