語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
查詢
薦購
讀者園地
我的帳戶
說明
簡單查詢
進階查詢
圖書館推薦圖書
讀者推薦圖書(公開)
教師指定參考書
借閱排行榜
預約排行榜
分類瀏覽
展示書
專題書單RSS
個人資料
個人檢索策略
個人薦購
借閱紀錄/續借/預約
個人評論
個人書籤
東區互惠借書
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Towards Self-Tracking Personal Pollu...
~
Sakhnini, Nina.
FindBook
Google Book
Amazon
博客來
Towards Self-Tracking Personal Pollution Exposure Using Wearables.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Towards Self-Tracking Personal Pollution Exposure Using Wearables./
作者:
Sakhnini, Nina.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
115 p.
附註:
Source: Masters Abstracts International, Volume: 81-08.
Contained By:
Masters Abstracts International81-08.
標題:
Computer science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27605390
ISBN:
9781687998347
Towards Self-Tracking Personal Pollution Exposure Using Wearables.
Sakhnini, Nina.
Towards Self-Tracking Personal Pollution Exposure Using Wearables.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 115 p.
Source: Masters Abstracts International, Volume: 81-08.
Thesis (M.S.)--University of Illinois at Chicago, 2019.
This item must not be sold to any third party vendors.
Recent epidemiological studies have shown that long-term exposure to air pollution is positively associated with mild cognitive impairment (MCI). Although interest in pollution monitoring is proliferating, self-tracking personal pollution exposure is little explored. In this thesis, I adopt a human-centered computing approach to explore the design space of personal pollution tracking wearables. This work makes three contributions to human-computer interaction: 1) design guidelines for rapid-prototyping low-cost, sub-optimal personal pollution tracking wearables and a physical prototype that measures pollutants shown to be associated with cognitive impairment in older adults: PM2.5 and ambient noise, 2) exploration of different calibration techniques to improve the accuracy of low-cost PM2.5 sensors, and 3) a characterization of how human interference, our day-to-day activities, significantly affect the operation of personal pollution tracking wearables. In sum, this thesis informs design guidelines about how to physically prototype personal pollution tracking wearables and where to wear them---beyond citizen-science efforts of data collection---rather toward monitoring personal long-term pollution exposures to mitigate the environmental risk factors for many illnesses such as early dementia.
ISBN: 9781687998347Subjects--Topical Terms:
523869
Computer science.
Subjects--Index Terms:
Pollution exposure management
Towards Self-Tracking Personal Pollution Exposure Using Wearables.
LDR
:02620nmm a2200409 4500
001
2272917
005
20201105110258.5
008
220629s2019 ||||||||||||||||| ||eng d
020
$a
9781687998347
035
$a
(MiAaPQ)AAI27605390
035
$a
(MiAaPQ)0799vireo1485Sakhnini
035
$a
AAI27605390
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Sakhnini, Nina.
$3
3550343
245
1 0
$a
Towards Self-Tracking Personal Pollution Exposure Using Wearables.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
115 p.
500
$a
Source: Masters Abstracts International, Volume: 81-08.
500
$a
Advisor: Chattopadhyay, Debaleena.
502
$a
Thesis (M.S.)--University of Illinois at Chicago, 2019.
506
$a
This item must not be sold to any third party vendors.
520
$a
Recent epidemiological studies have shown that long-term exposure to air pollution is positively associated with mild cognitive impairment (MCI). Although interest in pollution monitoring is proliferating, self-tracking personal pollution exposure is little explored. In this thesis, I adopt a human-centered computing approach to explore the design space of personal pollution tracking wearables. This work makes three contributions to human-computer interaction: 1) design guidelines for rapid-prototyping low-cost, sub-optimal personal pollution tracking wearables and a physical prototype that measures pollutants shown to be associated with cognitive impairment in older adults: PM2.5 and ambient noise, 2) exploration of different calibration techniques to improve the accuracy of low-cost PM2.5 sensors, and 3) a characterization of how human interference, our day-to-day activities, significantly affect the operation of personal pollution tracking wearables. In sum, this thesis informs design guidelines about how to physically prototype personal pollution tracking wearables and where to wear them---beyond citizen-science efforts of data collection---rather toward monitoring personal long-term pollution exposures to mitigate the environmental risk factors for many illnesses such as early dementia.
590
$a
School code: 0799.
650
4
$a
Computer science.
$3
523869
650
4
$a
Public health.
$3
534748
650
4
$a
Environmental health.
$3
543032
653
$a
Pollution exposure management
653
$a
Personal pollution monitoring
653
$a
Environmental sensing
653
$a
Noise pollution
653
$a
Low-cost pm2.5 sensors
653
$a
Pollution tracking wearables
653
$a
Human interference
690
$a
0984
690
$a
0470
690
$a
0573
710
2
$a
University of Illinois at Chicago.
$b
Computer Science.
$3
2094830
773
0
$t
Masters Abstracts International
$g
81-08.
790
$a
0799
791
$a
M.S.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27605390
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9425151
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入