語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Respect Your Data: Topics in Inferen...
~
Clement, Colin.
FindBook
Google Book
Amazon
博客來
Respect Your Data: Topics in Inference and Modeling in Physics.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Respect Your Data: Topics in Inference and Modeling in Physics./
作者:
Clement, Colin.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
186 p.
附註:
Source: Dissertations Abstracts International, Volume: 81-08, Section: B.
Contained By:
Dissertations Abstracts International81-08B.
標題:
Physics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27541602
ISBN:
9781392437766
Respect Your Data: Topics in Inference and Modeling in Physics.
Clement, Colin.
Respect Your Data: Topics in Inference and Modeling in Physics.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 186 p.
Source: Dissertations Abstracts International, Volume: 81-08, Section: B.
Thesis (Ph.D.)--Cornell University, 2019.
This item must not be sold to any third party vendors.
We discuss five topics related to inference and modeling in physics: image registration, magnetic image deconvolution, effective models of spin glasses, the two-dimensional Ising model, and a benchmark dataset of the arXiv pre-print service. First, we solve outstanding problems with image registration (which aims to infer the rigid shift relating two or more noisy shifted images), obtaining the information-theoretic limit in the precision of image shift estimation. Then, we use Bayesian inference and develop new physically-motivated priors in order to solve the ill-posed deconvolution problem of reconstructing electric currents from a magnetic images. After that, we apply machine learning and information geometry to study a spin glass model, finding that this model of canonical complexity is sloppy and thus allows for lower-dimensional effective descriptions. Next, we address outstanding questions regarding the corrections to scaling of the two dimensional Ising model by applying Normal Form Theory of dynamical systems to the Renormalization Group (RG) flows and raise important questions about the RG in various statistical ensembles. Finally, we develop tools and practices to cast the entire arXiv pre-print service into a benchmark dataset for studying models on graphs with multi-modal features.
ISBN: 9781392437766Subjects--Topical Terms:
516296
Physics.
Subjects--Index Terms:
ArXiv
Respect Your Data: Topics in Inference and Modeling in Physics.
LDR
:02457nmm a2200373 4500
001
2272868
005
20201105110245.5
008
220629s2019 ||||||||||||||||| ||eng d
020
$a
9781392437766
035
$a
(MiAaPQ)AAI27541602
035
$a
AAI27541602
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Clement, Colin.
$3
3550292
245
1 0
$a
Respect Your Data: Topics in Inference and Modeling in Physics.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
186 p.
500
$a
Source: Dissertations Abstracts International, Volume: 81-08, Section: B.
500
$a
Advisor: Sethna, James P.
502
$a
Thesis (Ph.D.)--Cornell University, 2019.
506
$a
This item must not be sold to any third party vendors.
520
$a
We discuss five topics related to inference and modeling in physics: image registration, magnetic image deconvolution, effective models of spin glasses, the two-dimensional Ising model, and a benchmark dataset of the arXiv pre-print service. First, we solve outstanding problems with image registration (which aims to infer the rigid shift relating two or more noisy shifted images), obtaining the information-theoretic limit in the precision of image shift estimation. Then, we use Bayesian inference and develop new physically-motivated priors in order to solve the ill-posed deconvolution problem of reconstructing electric currents from a magnetic images. After that, we apply machine learning and information geometry to study a spin glass model, finding that this model of canonical complexity is sloppy and thus allows for lower-dimensional effective descriptions. Next, we address outstanding questions regarding the corrections to scaling of the two dimensional Ising model by applying Normal Form Theory of dynamical systems to the Renormalization Group (RG) flows and raise important questions about the RG in various statistical ensembles. Finally, we develop tools and practices to cast the entire arXiv pre-print service into a benchmark dataset for studying models on graphs with multi-modal features.
590
$a
School code: 0058.
650
4
$a
Physics.
$3
516296
650
4
$a
Statistical physics.
$3
536281
653
$a
ArXiv
653
$a
Deconvolution
653
$a
Image registration
653
$a
Ising model
653
$a
Renormalization group
653
$a
Spin glass
690
$a
0605
690
$a
0217
710
2
$a
Cornell University.
$b
Physics.
$3
3173885
773
0
$t
Dissertations Abstracts International
$g
81-08B.
790
$a
0058
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27541602
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9425102
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入