語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Rethinking Reinforced Concrete Ducti...
~
Williams, Ian.
FindBook
Google Book
Amazon
博客來
Rethinking Reinforced Concrete Ductility in Compression.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Rethinking Reinforced Concrete Ductility in Compression./
作者:
Williams, Ian.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
155 p.
附註:
Source: Dissertations Abstracts International, Volume: 81-03, Section: B.
Contained By:
Dissertations Abstracts International81-03B.
標題:
Materials science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13885574
ISBN:
9781085791762
Rethinking Reinforced Concrete Ductility in Compression.
Williams, Ian.
Rethinking Reinforced Concrete Ductility in Compression.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 155 p.
Source: Dissertations Abstracts International, Volume: 81-03, Section: B.
Thesis (Ph.D.)--University of California, Berkeley, 2019.
This item must not be sold to any third party vendors.
Concrete is the most-used construction material in the world, yet on its own it is not ductile. It relies on carefully detailed steel reinforcing bar (rebar) cages to provide the tensile capacity and confinement needed to behave in a ductile manner. Building codes supply research-backed provisions that dictate how a reinforced concrete (RC) structure should be designed in order to meet ductility demands. Observations from seismic events within the last ten years reveal deficiencies in the code provisions in cases where large compressive strains are required. Subsequent experimental investigations found that in certain cases no practical amount of reinforcing steel could prevent brittle failure. To meet these demands it is necessary to stray from conventional paths and search for creative solutions to provide the requisite ductility.Research presented in this document explores an alternative approach to provide compressive ductility in reinforced concrete elements using Hybrid Fiber Reinforced Concrete (HyFRC). This material utilizes fiber hybridization to achieve deflection-hardening and a small amount of tensile strain-hardening. The goal is not to completely replace the steel reinforcing cages embedded in RC elements, but to enhance it in such a way that it maintains load-carrying capacity at large deformations. Response of experimental specimens is examined at a global and local level in order to provide a comprehensive understanding of the interactions and overall performance. One large-scale and one small-scale experiment is performed, and these data are used to construct and validate a predictive computational model that can be used to evaluate the behavior in other scenarios.Results of a large-scale compression test on a high aspect ratio column representative of a special shear wall boundary element demonstrate improved performance when constructed with HyFRC in place of conventional concrete. Control specimens lose confinement due to rebar buckling and opening of the lateral reinforcement which initiates upon cover spalling. Cover in the HyFRC specimen does not exhibit spalling, but instead shows a stable crushing behavior while leaving the cover material intact. This retained cover material delays the onset of longitudinal rebar buckling and provides additional confinement to the core. Due to this behavior toughness up to failure for the HyFRC specimen is, on average, 1.9-times higher than that of control specimens constructed with conventional concrete.Rectangular column specimens with embedded rebar are tested to isolate the behavior of longitudinal rebar buckling when embedded in HyFRC. Specimens are built with tie spacings of four-, six-, and twelve-bar diameters (db) and tested in uniaxial compression until failure. Results show that HyFRC slows the progression of buckling compared to conventional concrete and yields a more ductile, predicable behavior. At 2% normalized axial displacement the HyFRC specimens with 6-db tie spacing exhibited, on average, 34% higher toughness than the control specimens with the same spacing. At the same level of displacement, HyFRC specimens with 12-db tie spacing had, on average, 8% higher toughness than the control specimens with 6-db tie spacing. These results provide evidence that replacing conventional concrete with HyFRC could enable minimum lateral tie spacing requirements to be relaxed up to 12-db while still maintaining a ductile response with respect to buckling.A computational model is developed to predict the buckling behavior of longitudinal rebar in compression. This model accounts for the effects of transverse reinforcement and HyFRC cover. Experimental results from the large- and small-scale experiments are used to validate the model, which is then used to evaluate test cases with other geometries and materials. These results show that HyFRC improves the compressive response of large diameter rebar and high strength rebar with a nominal yield strength of 689-MPa (100-ksi).
ISBN: 9781085791762Subjects--Topical Terms:
543314
Materials science.
Subjects--Index Terms:
Buckling
Rethinking Reinforced Concrete Ductility in Compression.
LDR
:05171nmm a2200373 4500
001
2272574
005
20201105110127.5
008
220629s2019 ||||||||||||||||| ||eng d
020
$a
9781085791762
035
$a
(MiAaPQ)AAI13885574
035
$a
AAI13885574
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Williams, Ian.
$3
729015
245
1 0
$a
Rethinking Reinforced Concrete Ductility in Compression.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
155 p.
500
$a
Source: Dissertations Abstracts International, Volume: 81-03, Section: B.
500
$a
Advisor: Ostertag, Claudia P.
502
$a
Thesis (Ph.D.)--University of California, Berkeley, 2019.
506
$a
This item must not be sold to any third party vendors.
520
$a
Concrete is the most-used construction material in the world, yet on its own it is not ductile. It relies on carefully detailed steel reinforcing bar (rebar) cages to provide the tensile capacity and confinement needed to behave in a ductile manner. Building codes supply research-backed provisions that dictate how a reinforced concrete (RC) structure should be designed in order to meet ductility demands. Observations from seismic events within the last ten years reveal deficiencies in the code provisions in cases where large compressive strains are required. Subsequent experimental investigations found that in certain cases no practical amount of reinforcing steel could prevent brittle failure. To meet these demands it is necessary to stray from conventional paths and search for creative solutions to provide the requisite ductility.Research presented in this document explores an alternative approach to provide compressive ductility in reinforced concrete elements using Hybrid Fiber Reinforced Concrete (HyFRC). This material utilizes fiber hybridization to achieve deflection-hardening and a small amount of tensile strain-hardening. The goal is not to completely replace the steel reinforcing cages embedded in RC elements, but to enhance it in such a way that it maintains load-carrying capacity at large deformations. Response of experimental specimens is examined at a global and local level in order to provide a comprehensive understanding of the interactions and overall performance. One large-scale and one small-scale experiment is performed, and these data are used to construct and validate a predictive computational model that can be used to evaluate the behavior in other scenarios.Results of a large-scale compression test on a high aspect ratio column representative of a special shear wall boundary element demonstrate improved performance when constructed with HyFRC in place of conventional concrete. Control specimens lose confinement due to rebar buckling and opening of the lateral reinforcement which initiates upon cover spalling. Cover in the HyFRC specimen does not exhibit spalling, but instead shows a stable crushing behavior while leaving the cover material intact. This retained cover material delays the onset of longitudinal rebar buckling and provides additional confinement to the core. Due to this behavior toughness up to failure for the HyFRC specimen is, on average, 1.9-times higher than that of control specimens constructed with conventional concrete.Rectangular column specimens with embedded rebar are tested to isolate the behavior of longitudinal rebar buckling when embedded in HyFRC. Specimens are built with tie spacings of four-, six-, and twelve-bar diameters (db) and tested in uniaxial compression until failure. Results show that HyFRC slows the progression of buckling compared to conventional concrete and yields a more ductile, predicable behavior. At 2% normalized axial displacement the HyFRC specimens with 6-db tie spacing exhibited, on average, 34% higher toughness than the control specimens with the same spacing. At the same level of displacement, HyFRC specimens with 12-db tie spacing had, on average, 8% higher toughness than the control specimens with 6-db tie spacing. These results provide evidence that replacing conventional concrete with HyFRC could enable minimum lateral tie spacing requirements to be relaxed up to 12-db while still maintaining a ductile response with respect to buckling.A computational model is developed to predict the buckling behavior of longitudinal rebar in compression. This model accounts for the effects of transverse reinforcement and HyFRC cover. Experimental results from the large- and small-scale experiments are used to validate the model, which is then used to evaluate test cases with other geometries and materials. These results show that HyFRC improves the compressive response of large diameter rebar and high strength rebar with a nominal yield strength of 689-MPa (100-ksi).
590
$a
School code: 0028.
650
4
$a
Materials science.
$3
543314
650
4
$a
Civil engineering.
$3
860360
653
$a
Buckling
653
$a
Ductility
653
$a
Fiber reinforced concrete
653
$a
Hybrid
653
$a
Structural analysis
653
$a
Structural engineering
690
$a
0543
690
$a
0794
710
2
$a
University of California, Berkeley.
$b
Civil Engineering.
$3
3180959
773
0
$t
Dissertations Abstracts International
$g
81-03B.
790
$a
0028
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13885574
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9424808
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入