語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Integrating Genetic and Structural F...
~
Wang, Bo.
FindBook
Google Book
Amazon
博客來
Integrating Genetic and Structural Features: Building a Hybrid Physical-Statistical Classifier for Variants Related to Protein-Drug Interactions.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Integrating Genetic and Structural Features: Building a Hybrid Physical-Statistical Classifier for Variants Related to Protein-Drug Interactions./
作者:
Wang, Bo.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
99 p.
附註:
Source: Dissertations Abstracts International, Volume: 81-03, Section: B.
Contained By:
Dissertations Abstracts International81-03B.
標題:
Bioinformatics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13808535
ISBN:
9781088315019
Integrating Genetic and Structural Features: Building a Hybrid Physical-Statistical Classifier for Variants Related to Protein-Drug Interactions.
Wang, Bo.
Integrating Genetic and Structural Features: Building a Hybrid Physical-Statistical Classifier for Variants Related to Protein-Drug Interactions.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 99 p.
Source: Dissertations Abstracts International, Volume: 81-03, Section: B.
Thesis (Ph.D.)--Yale University, 2019.
This item must not be sold to any third party vendors.
A key issue in drug design is understanding how population variation affects drug efficacy by altering binding affinity (BA) in different individuals -- an important consideration for pharmaceutical regulators. Ideally, we would like to evaluate millions of single-nucleotide variants (SNVs) in relation to BA. However, only hundreds of protein-drug complexes with BA and mutations are available, constituting too small a gold-standard for straightforward statistical model training. Thus, we take a hybrid approach using physically-based calculations to bootstrap the parameterization of a full statistical model. In particular, we do 3D-structure-based docking calculations on ~10,000 SNVs modifying known protein-drug complexes to construct a pseudo-gold-standard dataset of BAs. Then we develop a complete statistical model combining structure, ligand and sequence features and show how it can be applied to score millions of SNVs. Finally, we show our model has good performance in cross-validated testing (AUROC of 97%) and can also be validated by orthogonal ligand-binding data.
ISBN: 9781088315019Subjects--Topical Terms:
553671
Bioinformatics.
Subjects--Index Terms:
Human genome
Integrating Genetic and Structural Features: Building a Hybrid Physical-Statistical Classifier for Variants Related to Protein-Drug Interactions.
LDR
:02410nmm a2200397 4500
001
2272397
005
20201105110046.5
008
220629s2019 ||||||||||||||||| ||eng d
020
$a
9781088315019
035
$a
(MiAaPQ)AAI13808535
035
$a
AAI13808535
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Wang, Bo.
$3
1267634
245
1 0
$a
Integrating Genetic and Structural Features: Building a Hybrid Physical-Statistical Classifier for Variants Related to Protein-Drug Interactions.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
99 p.
500
$a
Source: Dissertations Abstracts International, Volume: 81-03, Section: B.
500
$a
Advisor: Gerstein, Mark B.
502
$a
Thesis (Ph.D.)--Yale University, 2019.
506
$a
This item must not be sold to any third party vendors.
506
$a
This item must not be added to any third party search indexes.
520
$a
A key issue in drug design is understanding how population variation affects drug efficacy by altering binding affinity (BA) in different individuals -- an important consideration for pharmaceutical regulators. Ideally, we would like to evaluate millions of single-nucleotide variants (SNVs) in relation to BA. However, only hundreds of protein-drug complexes with BA and mutations are available, constituting too small a gold-standard for straightforward statistical model training. Thus, we take a hybrid approach using physically-based calculations to bootstrap the parameterization of a full statistical model. In particular, we do 3D-structure-based docking calculations on ~10,000 SNVs modifying known protein-drug complexes to construct a pseudo-gold-standard dataset of BAs. Then we develop a complete statistical model combining structure, ligand and sequence features and show how it can be applied to score millions of SNVs. Finally, we show our model has good performance in cross-validated testing (AUROC of 97%) and can also be validated by orthogonal ligand-binding data.
590
$a
School code: 0265.
650
4
$a
Bioinformatics.
$3
553671
650
4
$a
Biophysics.
$3
518360
650
4
$a
Statistics.
$3
517247
653
$a
Human genome
653
$a
Precise medicine
653
$a
Protein-drug binding
653
$a
Random forest
653
$a
Snv
653
$a
Supervised learning
690
$a
0715
690
$a
0786
690
$a
0463
710
2
$a
Yale University.
$b
Chemistry.
$3
2101664
773
0
$t
Dissertations Abstracts International
$g
81-03B.
790
$a
0265
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13808535
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9424631
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入