語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Exploring Abstract Concepts for Imag...
~
Galfre, Gabriele.
FindBook
Google Book
Amazon
博客來
Exploring Abstract Concepts for Images Privacy Classification in Social Media.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Exploring Abstract Concepts for Images Privacy Classification in Social Media./
作者:
Galfre, Gabriele.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
111 p.
附註:
Source: Masters Abstracts International, Volume: 81-11.
Contained By:
Masters Abstracts International81-11.
標題:
Computer science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27987588
ISBN:
9798641844909
Exploring Abstract Concepts for Images Privacy Classification in Social Media.
Galfre, Gabriele.
Exploring Abstract Concepts for Images Privacy Classification in Social Media.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 111 p.
Source: Masters Abstracts International, Volume: 81-11.
Thesis (M.S.)--University of Illinois at Chicago, 2019.
This item must not be sold to any third party vendors.
Automatically detecting the private nature of images posted in social networks such as Facebook, Flickr, and Instagram, is a long-standing goal considering the pervasiveness of these networks. Several prior works to image privacy prediction showed that object tags, either manually annotated or automatically extracted from images, are highly informative about images' privacy. However, we conjecture that other aspects of images captured by abstract concepts (e.g., religion, sikhism, spirituality) can improve the performance of models that use only the concrete objects from an image (e.g., temple and person). Several experimental setups have been defined to investigate how the usage of these type of information influence the performance of privacy classifiers. Results on a Flickr dataset show that the abstract concepts are better capturing the privacy nature of images, but with concrete object tags they complement each other, yielding the best performance when used in combination as features for image privacy prediction.
ISBN: 9798641844909Subjects--Topical Terms:
523869
Computer science.
Subjects--Index Terms:
Social networks
Exploring Abstract Concepts for Images Privacy Classification in Social Media.
LDR
:02127nmm a2200349 4500
001
2272136
005
20201102111714.5
008
220629s2019 ||||||||||||||||| ||eng d
020
$a
9798641844909
035
$a
(MiAaPQ)AAI27987588
035
$a
(MiAaPQ)0799vireo1814Galfre
035
$a
AAI27987588
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Galfre, Gabriele.
$3
3549564
245
1 0
$a
Exploring Abstract Concepts for Images Privacy Classification in Social Media.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
111 p.
500
$a
Source: Masters Abstracts International, Volume: 81-11.
500
$a
Advisor: Caragea, Cornelia.
502
$a
Thesis (M.S.)--University of Illinois at Chicago, 2019.
506
$a
This item must not be sold to any third party vendors.
520
$a
Automatically detecting the private nature of images posted in social networks such as Facebook, Flickr, and Instagram, is a long-standing goal considering the pervasiveness of these networks. Several prior works to image privacy prediction showed that object tags, either manually annotated or automatically extracted from images, are highly informative about images' privacy. However, we conjecture that other aspects of images captured by abstract concepts (e.g., religion, sikhism, spirituality) can improve the performance of models that use only the concrete objects from an image (e.g., temple and person). Several experimental setups have been defined to investigate how the usage of these type of information influence the performance of privacy classifiers. Results on a Flickr dataset show that the abstract concepts are better capturing the privacy nature of images, but with concrete object tags they complement each other, yielding the best performance when used in combination as features for image privacy prediction.
590
$a
School code: 0799.
650
4
$a
Computer science.
$3
523869
650
4
$a
Theoretical physics.
$3
2144760
653
$a
Social networks
653
$a
Privacy
653
$a
Abstractness
690
$a
0984
690
$a
0753
710
2
$a
University of Illinois at Chicago.
$b
Computer Science.
$3
2094830
773
0
$t
Masters Abstracts International
$g
81-11.
790
$a
0799
791
$a
M.S.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27987588
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9424370
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入