語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Asymptotic Uncertainty Quantificatio...
~
Zhu, Yi.
FindBook
Google Book
Amazon
博客來
Asymptotic Uncertainty Quantification and Its Application in Efficient Sampling and Learning.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Asymptotic Uncertainty Quantification and Its Application in Efficient Sampling and Learning./
作者:
Zhu, Yi.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2020,
面頁冊數:
197 p.
附註:
Source: Dissertations Abstracts International, Volume: 82-01, Section: B.
Contained By:
Dissertations Abstracts International82-01B.
標題:
Statistics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27964080
ISBN:
9798662367371
Asymptotic Uncertainty Quantification and Its Application in Efficient Sampling and Learning.
Zhu, Yi.
Asymptotic Uncertainty Quantification and Its Application in Efficient Sampling and Learning.
- Ann Arbor : ProQuest Dissertations & Theses, 2020 - 197 p.
Source: Dissertations Abstracts International, Volume: 82-01, Section: B.
Thesis (Ph.D.)--Northwestern University, 2020.
This item must not be sold to any third party vendors.
The ever growing desire for accurate estimation and efficient learning necessitates the efforts to quantitatively characterize uncertainties for models. In this thesis, four problems pertaining to uncertainty quantification are discussed:A sequential stopping framework of constructing fixed-precision confidence regions is proposed for a class of multivariate simulation problems where variance estimation is difficult.An algorithm is developed to construct asymptotically valid confidence regions for model parameters for Stochastic Gradient Descent using the batch means method. Statistical inference for reinforcement learning is studied and the statistical property can be applied to develop efficient exploration policies.Uncertainty of decision making is discussed under three asymptotic regimes for ranking and selection (best arm identification) problems with general sample distributions.
ISBN: 9798662367371Subjects--Topical Terms:
517247
Statistics.
Subjects--Index Terms:
Ranking and selection
Asymptotic Uncertainty Quantification and Its Application in Efficient Sampling and Learning.
LDR
:02125nmm a2200373 4500
001
2270153
005
20200921070638.5
008
220629s2020 ||||||||||||||||| ||eng d
020
$a
9798662367371
035
$a
(MiAaPQ)AAI27964080
035
$a
AAI27964080
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Zhu, Yi.
$3
1953037
245
1 0
$a
Asymptotic Uncertainty Quantification and Its Application in Efficient Sampling and Learning.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2020
300
$a
197 p.
500
$a
Source: Dissertations Abstracts International, Volume: 82-01, Section: B.
500
$a
Advisor: Nelson, Barry;Dong, Jing.
502
$a
Thesis (Ph.D.)--Northwestern University, 2020.
506
$a
This item must not be sold to any third party vendors.
520
$a
The ever growing desire for accurate estimation and efficient learning necessitates the efforts to quantitatively characterize uncertainties for models. In this thesis, four problems pertaining to uncertainty quantification are discussed:A sequential stopping framework of constructing fixed-precision confidence regions is proposed for a class of multivariate simulation problems where variance estimation is difficult.An algorithm is developed to construct asymptotically valid confidence regions for model parameters for Stochastic Gradient Descent using the batch means method. Statistical inference for reinforcement learning is studied and the statistical property can be applied to develop efficient exploration policies.Uncertainty of decision making is discussed under three asymptotic regimes for ranking and selection (best arm identification) problems with general sample distributions.
590
$a
School code: 0163.
650
4
$a
Statistics.
$3
517247
650
4
$a
Applied mathematics.
$3
2122814
650
4
$a
Computer science.
$3
523869
653
$a
Ranking and selection
653
$a
Reinforcement learning
653
$a
Statistical learning
653
$a
Stochastic gradient descent
653
$a
Uncertainty quantification
690
$a
0463
690
$a
0364
690
$a
0984
710
2
$a
Northwestern University.
$b
Industrial Engineering and Management Sciences.
$3
1023502
773
0
$t
Dissertations Abstracts International
$g
82-01B.
790
$a
0163
791
$a
Ph.D.
792
$a
2020
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27964080
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9422387
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入