語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Optimization of Al2O3/TiO2/Al 2O3 Mu...
~
Li, Chao.
FindBook
Google Book
Amazon
博客來
Optimization of Al2O3/TiO2/Al 2O3 Multilayer Antireflection Coating With X-Ray Scattering Techniques.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Optimization of Al2O3/TiO2/Al 2O3 Multilayer Antireflection Coating With X-Ray Scattering Techniques./
作者:
Li, Chao.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2018,
面頁冊數:
103 p.
附註:
Source: Dissertations Abstracts International, Volume: 79-10, Section: B.
Contained By:
Dissertations Abstracts International79-10B.
標題:
Materials science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10751848
ISBN:
9780355811278
Optimization of Al2O3/TiO2/Al 2O3 Multilayer Antireflection Coating With X-Ray Scattering Techniques.
Li, Chao.
Optimization of Al2O3/TiO2/Al 2O3 Multilayer Antireflection Coating With X-Ray Scattering Techniques.
- Ann Arbor : ProQuest Dissertations & Theses, 2018 - 103 p.
Source: Dissertations Abstracts International, Volume: 79-10, Section: B.
Thesis (Ph.D.)--University of California, Los Angeles, 2018.
This item must not be sold to any third party vendors.
Broadband multilayer antireflection coatings (ARCs) are keys to improving solar cell efficiencies. The goal of this dissertation is to optimize the multilayer Al2O3/TiO2/Al2O 3 ARC designed for a III-V space multi-junction solar cell with understanding influences of post-annealing and varying deposition parameters on the optical properties. Accurately measuring optical properties is important in accessing optical performances of ARCs. The multilayer Al2O3/TiO 2/Al2O3 ARC and individual Al2O 3 and TiO2 layers were characterized by a novel X-ray reflectivity (XRR) method and a combined method of grazing-incidence small angle X-ray scattering (GISAXS), atomic force microscopy (AFM), and XRR developed in this study. The novel XRR method combining an enhanced Fourier analysis with specular XRR simulation effectively determines layer thicknesses and surface and interface roughnesses and/or grading with sub-nanometer precision, and densities less than three percent uncertainty. Also, the combined method of GISAXS, AFM, and XRR characterizes the distribution of pore size with one-nanometer uncertainty. Unique to this method, the diffuse scattering from surface and interface roughnesses is estimated with surface parameters (root mean square roughness σ, lateral correlation length &xgr;, and Hurst parameter h) obtained from AFM, and layer densities, surface grading and interface roughness/grading obtained from specular XRR. It is then separated from pore scattering. These X-ray scattering techniques obtained consistent results and were validated by other techniques including optical reflectance, spectroscopic ellipsometry (SE), glancing incidence X-ray diffraction, transmission electron microscopy and energy dispersive X-ray spectroscopy. The ARCs were deposited by atomic layer deposition with standard parameters at 200 °C. The as-deposited individual Al2O3 layer on Si is porous and amorphous as indicated by the combined methods of GISAXS, AFM, and XRR. Both post-annealing at 400 °C for 40 min in air and varying ALD parameters can eliminate pores, and lead to consistent increases in density and refractive index determined by the XRR method, SE, and optical reflectance measurements. After annealing, the layer remains amorphous. On the other hand, the as-deposited TiO 2 layer is non-porous and amorphous. It is densified and crystallized after annealing at 400 °C for 10 min in air. The multilayer Al2O 3/TiO2/Al2O3 ARC deposited on Si has surface and interface roughnesses and/or grading on the order of one nanometer. Annealing at 400 °C for 10 min in air induces densification and crystallization of the amorphous TiO2 layer as well as possible chemical reactions between TiO2 and Si diffusing from the substrate. On the other hand, Al2O3 layers remain amorphous after annealing. The thickness of the top Al2O3 layer decreases - likely due to interdiffusion between the top two layers and loss of hydrogen from hydroxyl groups initially present in the ALD layers. The thickness of the bottom Al2O3 layer increases, probably due to the diffusion of Si atoms into the bottom layer. In addition, the multilayer Al 2O3/TiO2/Al2O3 ARC was deposited on AlInP (30nm) / GaInP (100nm) / GaAs that includes the topmost layers of III-V multi-junction solar cells. Reflectance below 5 % is achieved within nearly the whole wavelength range of the current-limiting sub-cell. Also, internal scattering occurs in the TiO2 layer possibly associated with the initiated crystallization in the TiO2 layer while absent in the amorphous Al2O3 layers.
ISBN: 9780355811278Subjects--Topical Terms:
543314
Materials science.
Subjects--Index Terms:
Antireflection coating
Optimization of Al2O3/TiO2/Al 2O3 Multilayer Antireflection Coating With X-Ray Scattering Techniques.
LDR
:04773nmm a2200361 4500
001
2269168
005
20200910100149.5
008
220629s2018 ||||||||||||||||| ||eng d
020
$a
9780355811278
035
$a
(MiAaPQ)AAI10751848
035
$a
(MiAaPQ)ucla:16606
035
$a
AAI10751848
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Li, Chao.
$3
1263714
245
1 0
$a
Optimization of Al2O3/TiO2/Al 2O3 Multilayer Antireflection Coating With X-Ray Scattering Techniques.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2018
300
$a
103 p.
500
$a
Source: Dissertations Abstracts International, Volume: 79-10, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Goorsky, Mark S.
502
$a
Thesis (Ph.D.)--University of California, Los Angeles, 2018.
506
$a
This item must not be sold to any third party vendors.
520
$a
Broadband multilayer antireflection coatings (ARCs) are keys to improving solar cell efficiencies. The goal of this dissertation is to optimize the multilayer Al2O3/TiO2/Al2O 3 ARC designed for a III-V space multi-junction solar cell with understanding influences of post-annealing and varying deposition parameters on the optical properties. Accurately measuring optical properties is important in accessing optical performances of ARCs. The multilayer Al2O3/TiO 2/Al2O3 ARC and individual Al2O 3 and TiO2 layers were characterized by a novel X-ray reflectivity (XRR) method and a combined method of grazing-incidence small angle X-ray scattering (GISAXS), atomic force microscopy (AFM), and XRR developed in this study. The novel XRR method combining an enhanced Fourier analysis with specular XRR simulation effectively determines layer thicknesses and surface and interface roughnesses and/or grading with sub-nanometer precision, and densities less than three percent uncertainty. Also, the combined method of GISAXS, AFM, and XRR characterizes the distribution of pore size with one-nanometer uncertainty. Unique to this method, the diffuse scattering from surface and interface roughnesses is estimated with surface parameters (root mean square roughness σ, lateral correlation length &xgr;, and Hurst parameter h) obtained from AFM, and layer densities, surface grading and interface roughness/grading obtained from specular XRR. It is then separated from pore scattering. These X-ray scattering techniques obtained consistent results and were validated by other techniques including optical reflectance, spectroscopic ellipsometry (SE), glancing incidence X-ray diffraction, transmission electron microscopy and energy dispersive X-ray spectroscopy. The ARCs were deposited by atomic layer deposition with standard parameters at 200 °C. The as-deposited individual Al2O3 layer on Si is porous and amorphous as indicated by the combined methods of GISAXS, AFM, and XRR. Both post-annealing at 400 °C for 40 min in air and varying ALD parameters can eliminate pores, and lead to consistent increases in density and refractive index determined by the XRR method, SE, and optical reflectance measurements. After annealing, the layer remains amorphous. On the other hand, the as-deposited TiO 2 layer is non-porous and amorphous. It is densified and crystallized after annealing at 400 °C for 10 min in air. The multilayer Al2O 3/TiO2/Al2O3 ARC deposited on Si has surface and interface roughnesses and/or grading on the order of one nanometer. Annealing at 400 °C for 10 min in air induces densification and crystallization of the amorphous TiO2 layer as well as possible chemical reactions between TiO2 and Si diffusing from the substrate. On the other hand, Al2O3 layers remain amorphous after annealing. The thickness of the top Al2O3 layer decreases - likely due to interdiffusion between the top two layers and loss of hydrogen from hydroxyl groups initially present in the ALD layers. The thickness of the bottom Al2O3 layer increases, probably due to the diffusion of Si atoms into the bottom layer. In addition, the multilayer Al 2O3/TiO2/Al2O3 ARC was deposited on AlInP (30nm) / GaInP (100nm) / GaAs that includes the topmost layers of III-V multi-junction solar cells. Reflectance below 5 % is achieved within nearly the whole wavelength range of the current-limiting sub-cell. Also, internal scattering occurs in the TiO2 layer possibly associated with the initiated crystallization in the TiO2 layer while absent in the amorphous Al2O3 layers.
590
$a
School code: 0031.
650
4
$a
Materials science.
$3
543314
653
$a
Antireflection coating
653
$a
Atomic layer deposition
653
$a
Gisaxs
653
$a
XRR
690
$a
0794
710
2
$a
University of California, Los Angeles.
$b
Materials Science and Engineering 0328.
$3
3192900
773
0
$t
Dissertations Abstracts International
$g
79-10B.
790
$a
0031
791
$a
Ph.D.
792
$a
2018
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10751848
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9421402
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入