語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Physical-biological Interactions Dri...
~
Brooks, Maureen Therese.
FindBook
Google Book
Amazon
博客來
Physical-biological Interactions Driving the Distribution of the Pelagic Macroalgae Sargassum.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Physical-biological Interactions Driving the Distribution of the Pelagic Macroalgae Sargassum./
作者:
Brooks, Maureen Therese.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
153 p.
附註:
Source: Dissertations Abstracts International, Volume: 81-02, Section: B.
Contained By:
Dissertations Abstracts International81-02B.
標題:
Biological oceanography. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13857961
ISBN:
9781085561884
Physical-biological Interactions Driving the Distribution of the Pelagic Macroalgae Sargassum.
Brooks, Maureen Therese.
Physical-biological Interactions Driving the Distribution of the Pelagic Macroalgae Sargassum.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 153 p.
Source: Dissertations Abstracts International, Volume: 81-02, Section: B.
Thesis (Ph.D.)--University of Maryland, College Park, 2019.
This item must not be sold to any third party vendors.
The holopelagic macroalgae of the genus Sargassum are the ecosystem engineers of a unique open-ocean rafting ecosystem in the subtropical North Atlantic and tropical Atlantic. Over the last decade, increases in biomass in the tropics and Caribbean Sea have been observed. The underlying causes of this regime shift have been difficult to discern without a baseline understanding of the drivers of Sargassum distribution. The objective of this dissertation is to fill this knowledge gap using remote and in situ observations, and coupled ocean circulation, biogeochemical, Lagrangian particle, and Sargassum physiology models. A satellite-derived Sargassum abundance climatology shows the center-of-mass of Sargassum shifting between the tropics, Caribbean, Gulf of Mexico, and Sargasso Sea throughout the year. Model experiments demonstrate that advection alone can explain up to 60% of the observed distribution at time scales shorter than two months. At longer time scales, the growth and reproductive strategy of the macroalgae interact with physical processes to drive the overall observed pattern. Sargassum populations in the Western Tropical Atlantic and Gulf of Mexico appear to exert disproportionate influence over the basin-wide distribution. One key physical process influencing both transport and growth is inertia. A novel inverse method, developed from remote sensing to determine the effective radius of Sargassum rafts, facilitates modeling inertial effects. The effective radius is on the order of 0.95 m, much closer to the size of an individual plant than that of aggregations which can span kilometers. The inclusion of inertia alters modeled distributions of Sargassum by increasing retention in the Gulf of Mexico and the Caribbean, while increasing export from the Sargasso Sea by up to 20%. Inertia acting on buoyant Sargassum rafts also leads to their increased entrainment in cyclonic eddies. These eddies propagate toward the north-west in the northern hemisphere providing transport for Sargassum from the tropics through the Caribbean to the Gulf of Mexico and leading to increased biomass due to transport into regions with better growing conditions. Sargassum biology and its interaction with ocean circulation and mesoscale features is central to improving understanding of the changes in its distribution and for prediction of costly beaching events.
ISBN: 9781085561884Subjects--Topical Terms:
2122748
Biological oceanography.
Subjects--Index Terms:
Biophysical interactions
Physical-biological Interactions Driving the Distribution of the Pelagic Macroalgae Sargassum.
LDR
:03524nmm a2200349 4500
001
2268809
005
20200824100400.5
008
220629s2019 ||||||||||||||||| ||eng d
020
$a
9781085561884
035
$a
(MiAaPQ)AAI13857961
035
$a
AAI13857961
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Brooks, Maureen Therese.
$3
3546109
245
1 0
$a
Physical-biological Interactions Driving the Distribution of the Pelagic Macroalgae Sargassum.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
153 p.
500
$a
Source: Dissertations Abstracts International, Volume: 81-02, Section: B.
500
$a
Advisor: Coles, Victoria J.
502
$a
Thesis (Ph.D.)--University of Maryland, College Park, 2019.
506
$a
This item must not be sold to any third party vendors.
520
$a
The holopelagic macroalgae of the genus Sargassum are the ecosystem engineers of a unique open-ocean rafting ecosystem in the subtropical North Atlantic and tropical Atlantic. Over the last decade, increases in biomass in the tropics and Caribbean Sea have been observed. The underlying causes of this regime shift have been difficult to discern without a baseline understanding of the drivers of Sargassum distribution. The objective of this dissertation is to fill this knowledge gap using remote and in situ observations, and coupled ocean circulation, biogeochemical, Lagrangian particle, and Sargassum physiology models. A satellite-derived Sargassum abundance climatology shows the center-of-mass of Sargassum shifting between the tropics, Caribbean, Gulf of Mexico, and Sargasso Sea throughout the year. Model experiments demonstrate that advection alone can explain up to 60% of the observed distribution at time scales shorter than two months. At longer time scales, the growth and reproductive strategy of the macroalgae interact with physical processes to drive the overall observed pattern. Sargassum populations in the Western Tropical Atlantic and Gulf of Mexico appear to exert disproportionate influence over the basin-wide distribution. One key physical process influencing both transport and growth is inertia. A novel inverse method, developed from remote sensing to determine the effective radius of Sargassum rafts, facilitates modeling inertial effects. The effective radius is on the order of 0.95 m, much closer to the size of an individual plant than that of aggregations which can span kilometers. The inclusion of inertia alters modeled distributions of Sargassum by increasing retention in the Gulf of Mexico and the Caribbean, while increasing export from the Sargasso Sea by up to 20%. Inertia acting on buoyant Sargassum rafts also leads to their increased entrainment in cyclonic eddies. These eddies propagate toward the north-west in the northern hemisphere providing transport for Sargassum from the tropics through the Caribbean to the Gulf of Mexico and leading to increased biomass due to transport into regions with better growing conditions. Sargassum biology and its interaction with ocean circulation and mesoscale features is central to improving understanding of the changes in its distribution and for prediction of costly beaching events.
590
$a
School code: 0117.
650
4
$a
Biological oceanography.
$3
2122748
650
4
$a
Physical oceanography.
$3
3168433
653
$a
Biophysical interactions
653
$a
Macroalgae
653
$a
Numerical modeling
653
$a
Sargassum
690
$a
0416
690
$a
0415
710
2
$a
University of Maryland, College Park.
$b
Marine-Estuarine-Environmental Sciences.
$3
1023615
773
0
$t
Dissertations Abstracts International
$g
81-02B.
790
$a
0117
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13857961
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9421043
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入