Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
A Finite Element Method for Modeling...
~
Bergel, Guy Leshem.
Linked to FindBook
Google Book
Amazon
博客來
A Finite Element Method for Modeling Surface Growth and Resorption of Deformable Bodies with Applications to Cell Migration.
Record Type:
Electronic resources : Monograph/item
Title/Author:
A Finite Element Method for Modeling Surface Growth and Resorption of Deformable Bodies with Applications to Cell Migration./
Author:
Bergel, Guy Leshem.
Published:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
Description:
117 p.
Notes:
Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Contained By:
Dissertations Abstracts International81-04B.
Subject:
Civil engineering. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13809457
ISBN:
9781085776936
A Finite Element Method for Modeling Surface Growth and Resorption of Deformable Bodies with Applications to Cell Migration.
Bergel, Guy Leshem.
A Finite Element Method for Modeling Surface Growth and Resorption of Deformable Bodies with Applications to Cell Migration.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 117 p.
Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Thesis (Ph.D.)--University of California, Berkeley, 2019.
This item must not be sold to any third party vendors.
Surface growth/resorption is the process wherein material is added to or removed from the boundary of a physical body. As a consequence, the set of material points constituting the body is time-dependent and thus lacks a static reference configuration. In this dissertation, kinematics and balance laws are formulated for a body undergoing surface growth/resorption and finite deformation. This is achieved by defining an evolving reference configuration termed the intermediate configuration which tracks the set of material points constituting the body at a given time.An extension of the Arbitrary Lagrangian-Eulerian finite element method is introduced to solve the discretized set of balance laws on the grown/resorpted body, alongside algorithmic implementations to track the evolving boundary of the physical body. The effect of accreting material with no prior history of deformation onto a body undergoing rigid motions as well as a loaded body is discussed. Moreover, the correlation between growth/resorption rate and the spatial and temporal convergence of the finite element approximations of fields are illustrated.The numerical implementation for surface growth and resorption is used to simulate a migrating cell which moves in an apparent "treadmilling" motion on a substrate by polymerizing and de-polymerizing microfilaments along its boundary. An example is presented which defines a surface growth law based on the nucleation and dissociation of chemical species, and the steady-state treadmilling velocity is computed for various assumed cell shapes. Lastly, simulation results are shown for an idealized cell colliding with external barriers, leading to a re-orientation of the surface growth/resorption direction. The effects of dynamic contact on the surface growth/resorption as well as the stress and deformation are discussed.
ISBN: 9781085776936Subjects--Topical Terms:
860360
Civil engineering.
Subjects--Index Terms:
Arbitrary Lagrangian-Eulerian FEM
A Finite Element Method for Modeling Surface Growth and Resorption of Deformable Bodies with Applications to Cell Migration.
LDR
:03132nmm a2200373 4500
001
2267088
005
20200623111655.5
008
220629s2019 ||||||||||||||||| ||eng d
020
$a
9781085776936
035
$a
(MiAaPQ)AAI13809457
035
$a
AAI13809457
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Bergel, Guy Leshem.
$3
3544329
245
1 0
$a
A Finite Element Method for Modeling Surface Growth and Resorption of Deformable Bodies with Applications to Cell Migration.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
117 p.
500
$a
Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
500
$a
Advisor: Papadopoulos, Panayiotis;Taylor, Robert L.
502
$a
Thesis (Ph.D.)--University of California, Berkeley, 2019.
506
$a
This item must not be sold to any third party vendors.
520
$a
Surface growth/resorption is the process wherein material is added to or removed from the boundary of a physical body. As a consequence, the set of material points constituting the body is time-dependent and thus lacks a static reference configuration. In this dissertation, kinematics and balance laws are formulated for a body undergoing surface growth/resorption and finite deformation. This is achieved by defining an evolving reference configuration termed the intermediate configuration which tracks the set of material points constituting the body at a given time.An extension of the Arbitrary Lagrangian-Eulerian finite element method is introduced to solve the discretized set of balance laws on the grown/resorpted body, alongside algorithmic implementations to track the evolving boundary of the physical body. The effect of accreting material with no prior history of deformation onto a body undergoing rigid motions as well as a loaded body is discussed. Moreover, the correlation between growth/resorption rate and the spatial and temporal convergence of the finite element approximations of fields are illustrated.The numerical implementation for surface growth and resorption is used to simulate a migrating cell which moves in an apparent "treadmilling" motion on a substrate by polymerizing and de-polymerizing microfilaments along its boundary. An example is presented which defines a surface growth law based on the nucleation and dissociation of chemical species, and the steady-state treadmilling velocity is computed for various assumed cell shapes. Lastly, simulation results are shown for an idealized cell colliding with external barriers, leading to a re-orientation of the surface growth/resorption direction. The effects of dynamic contact on the surface growth/resorption as well as the stress and deformation are discussed.
590
$a
School code: 0028.
650
4
$a
Civil engineering.
$3
860360
650
4
$a
Mechanical engineering.
$3
649730
650
4
$a
Mechanics.
$3
525881
653
$a
Arbitrary Lagrangian-Eulerian FEM
653
$a
Cell motility
653
$a
Front-tracking algorithm
653
$a
Surface growth and resorption
653
$a
Kinematics
690
$a
0543
690
$a
0548
690
$a
0346
710
2
$a
University of California, Berkeley.
$b
Civil and Environmental Engineering.
$3
1043687
773
0
$t
Dissertations Abstracts International
$g
81-04B.
790
$a
0028
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13809457
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9419322
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login