語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
An Investigation of General Criteria...
~
Daniels, Cindy L.
FindBook
Google Book
Amazon
博客來
An Investigation of General Criteria for Assessing Space Flight Systems of Diverse Mission Concept Designs.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
An Investigation of General Criteria for Assessing Space Flight Systems of Diverse Mission Concept Designs./
作者:
Daniels, Cindy L.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
177 p.
附註:
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
Contained By:
Dissertations Abstracts International80-12B.
標題:
Engineering. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13878182
ISBN:
9781392268254
An Investigation of General Criteria for Assessing Space Flight Systems of Diverse Mission Concept Designs.
Daniels, Cindy L.
An Investigation of General Criteria for Assessing Space Flight Systems of Diverse Mission Concept Designs.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 177 p.
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
Thesis (Ph.D.)--Old Dominion University, 2019.
This item must not be sold to any third party vendors.
The purpose of this research is to investigate the general criteria for assessing the technical implementation risk factors of proposed space science missions at the mission concept stage. According to the National Aeronautics and Space Administration (NASA) Space Flight Program and Project Management Handbook (NASA, 2012), the mission concept review objectives are "To evaluate the feasibility of the proposed mission concept(s) and its fulfillment of the program's needs and objectives. To determine whether the maturity of the concept and associated planning are sufficient to begin Phase A" (p.33). Experts previously defined two technical risk factors, to assess aspects of the space flight systems and mission design and operations of proposed mission concepts. Criteria were developed to address these two technical risk factors, which are comprised of 23 criteria. The space flight systems factor was assumed to be addressed by 16 criteria, while seven criteria were assumed to address the mission design and operations factor.The criteria were developed by experts approximately 20 years ago, and no research has previously been conducted to determine whether all 23 of the evaluation criteria are necessary for assessing the implementation risk of proposed space flight systems and mission design and operations for proposed mission concepts. NASA uses these 23 criteria to conduct expert peer reviews to assess the implementation risk of over 500 unique space science mission concept proposals. An expert peer review process is used because the proposed concepts lack the detailed design information necessary for a quantifiable assessment of risk. The result of the expert peer review of each proposal is a set of ratings with a paragraph explaining the rationale for each rating, based on the 23 criteria.This research used 356 records from past assessments of proposed mission concepts that have been assessed using a five-level qualitative rating scale. A research approach which utilizes exploratory factor analysis and past records to analyze the ratings of the 23 criteria was used. Factor analysis was used to determine if the current factor structure was valid, whether all criteria had substantial loadings on the current factor, and whether all current criteria were necessary. Factor analysis was also used to determine if any of the criteria measured the same construct. This research used a discriminatory power scale to code criteria scores for factor analysis and to identify the criteria of significance to decision makers. This research identified criteria that could be eliminated or could be combined with other criteria. A result of this research is a reduced set of criteria for assessing space flight systems and for mission design and operations that can be accomplished by an expert peer review panel for a diverse set of space mission concepts. A refined set of criteria could result in a less expensive and quicker evaluation process. This can enable decision makers on early assessments of space flight systems to make decisions more efficiently by allowing them to focus only on the most important criteria. This refined set of criteria contributes to the literature on the qualitative risk assessment of space flight systems and mission design and operations. This research is supported by the existing body of literature in using factor analysis to refine a measurement instrument. Using factor analysis to evaluate criteria for spaceflight systems contributes another application of the use of factor analysis, beyond its historical use in psychology, education, and healthcare (Williams, Onsman, & Brown, 2010). This research provides a method that engineering managers can use to analyze and to refine a qualitative measurement instrument for assessment by a group of experts. This method could be useful in assessments that require a broad scope of required expertise.
ISBN: 9781392268254Subjects--Topical Terms:
586835
Engineering.
Subjects--Index Terms:
Exploratory factor analysis
An Investigation of General Criteria for Assessing Space Flight Systems of Diverse Mission Concept Designs.
LDR
:05291nmm a2200409 4500
001
2265876
005
20200529130307.5
008
220629s2019 ||||||||||||||||| ||eng d
020
$a
9781392268254
035
$a
(MiAaPQ)AAI13878182
035
$a
(MiAaPQ)odu:10927
035
$a
AAI13878182
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Daniels, Cindy L.
$3
3543056
245
1 3
$a
An Investigation of General Criteria for Assessing Space Flight Systems of Diverse Mission Concept Designs.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
177 p.
500
$a
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Unal, Resit.
502
$a
Thesis (Ph.D.)--Old Dominion University, 2019.
506
$a
This item must not be sold to any third party vendors.
520
$a
The purpose of this research is to investigate the general criteria for assessing the technical implementation risk factors of proposed space science missions at the mission concept stage. According to the National Aeronautics and Space Administration (NASA) Space Flight Program and Project Management Handbook (NASA, 2012), the mission concept review objectives are "To evaluate the feasibility of the proposed mission concept(s) and its fulfillment of the program's needs and objectives. To determine whether the maturity of the concept and associated planning are sufficient to begin Phase A" (p.33). Experts previously defined two technical risk factors, to assess aspects of the space flight systems and mission design and operations of proposed mission concepts. Criteria were developed to address these two technical risk factors, which are comprised of 23 criteria. The space flight systems factor was assumed to be addressed by 16 criteria, while seven criteria were assumed to address the mission design and operations factor.The criteria were developed by experts approximately 20 years ago, and no research has previously been conducted to determine whether all 23 of the evaluation criteria are necessary for assessing the implementation risk of proposed space flight systems and mission design and operations for proposed mission concepts. NASA uses these 23 criteria to conduct expert peer reviews to assess the implementation risk of over 500 unique space science mission concept proposals. An expert peer review process is used because the proposed concepts lack the detailed design information necessary for a quantifiable assessment of risk. The result of the expert peer review of each proposal is a set of ratings with a paragraph explaining the rationale for each rating, based on the 23 criteria.This research used 356 records from past assessments of proposed mission concepts that have been assessed using a five-level qualitative rating scale. A research approach which utilizes exploratory factor analysis and past records to analyze the ratings of the 23 criteria was used. Factor analysis was used to determine if the current factor structure was valid, whether all criteria had substantial loadings on the current factor, and whether all current criteria were necessary. Factor analysis was also used to determine if any of the criteria measured the same construct. This research used a discriminatory power scale to code criteria scores for factor analysis and to identify the criteria of significance to decision makers. This research identified criteria that could be eliminated or could be combined with other criteria. A result of this research is a reduced set of criteria for assessing space flight systems and for mission design and operations that can be accomplished by an expert peer review panel for a diverse set of space mission concepts. A refined set of criteria could result in a less expensive and quicker evaluation process. This can enable decision makers on early assessments of space flight systems to make decisions more efficiently by allowing them to focus only on the most important criteria. This refined set of criteria contributes to the literature on the qualitative risk assessment of space flight systems and mission design and operations. This research is supported by the existing body of literature in using factor analysis to refine a measurement instrument. Using factor analysis to evaluate criteria for spaceflight systems contributes another application of the use of factor analysis, beyond its historical use in psychology, education, and healthcare (Williams, Onsman, & Brown, 2010). This research provides a method that engineering managers can use to analyze and to refine a qualitative measurement instrument for assessment by a group of experts. This method could be useful in assessments that require a broad scope of required expertise.
590
$a
School code: 0418.
650
4
$a
Engineering.
$3
586835
650
4
$a
Aerospace engineering.
$3
1002622
650
4
$a
Systems science.
$3
3168411
653
$a
Exploratory factor analysis
653
$a
Mission concept
653
$a
NASA space science mission
653
$a
Space flight system assessment
653
$a
Space flight system criteria
653
$a
Space mission evaluation criteria
690
$a
0537
690
$a
0538
690
$a
0790
710
2
$a
Old Dominion University.
$b
Engineering Management.
$3
3344625
773
0
$t
Dissertations Abstracts International
$g
80-12B.
790
$a
0418
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13878182
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9418110
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入