語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Efficient Machine Learning: Models a...
~
Li, Zhe.
FindBook
Google Book
Amazon
博客來
Efficient Machine Learning: Models and Accelerations.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Efficient Machine Learning: Models and Accelerations./
作者:
Li, Zhe.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2018,
面頁冊數:
180 p.
附註:
Source: Dissertations Abstracts International, Volume: 80-08, Section: B.
Contained By:
Dissertations Abstracts International80-08B.
標題:
Computer Engineering. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13420726
ISBN:
9780438816091
Efficient Machine Learning: Models and Accelerations.
Li, Zhe.
Efficient Machine Learning: Models and Accelerations.
- Ann Arbor : ProQuest Dissertations & Theses, 2018 - 180 p.
Source: Dissertations Abstracts International, Volume: 80-08, Section: B.
Thesis (Ph.D.)--Syracuse University, 2018.
This item must not be sold to any third party vendors.
One of the key enablers of the recent unprecedented success of machine learning is the adoption of very large models. Modern machine learning models typically consist of multiple cascaded layers such as deep neural networks, and at least millions to hundreds of millions of parameters (i.e., weights) for the entire model. The larger-scale model tend to enable the extraction of more complex high-level features, and therefore, lead to a significant improvement of the overall accuracy. On the other side, the layered deep structure and large model sizes also demand to increase computational capability and memory requirements. In order to achieve higher scalability, performance, and energy efficiency for deep learning systems, two orthogonal research and development trends have attracted enormous interests. The first trend is the acceleration while the second is the model compression. The underlying goal of these two trends is the high quality of the models to provides accurate predictions. In this thesis, we address these two problems and utilize different computing paradigms to solve real-life deep learning problems. To explore in these two domains, this thesis first presents the cogent confabulation network for sentence completion problem. We use Chinese language as a case study to describe our exploration of the cogent confabulation based text recognition models. The exploration and optimization of the cogent confabulation based models have been conducted through various comparisons. The optimized network offered a better accuracy performance for the sentence completion. To accelerate the sentence completion problem in a multi-processing system, we propose a parallel framework for the confabulation recall algorithm. The parallel implementation reduce runtime, improve the recall accuracy by breaking the fixed evaluation order and introducing more generalization, and maintain a balanced progress in status update among all neurons. A lexicon scheduling algorithm is presented to further improve the model performance. As deep neural networks have been proven effective to solve many real-life applications, and they are deployed on low-power devices, we then investigated the acceleration for the neural network inference using a hardware-friendly computing paradigm, stochastic computing. It is an approximate computing paradigm which requires small hardware footprint and achieves high energy efficiency. Applying this stochastic computing to deep convolutional neural networks, we design the functional hardware blocks and optimize them jointly to minimize the accuracy loss due to the approximation. The synthesis results show that the proposed design achieves the remarkable low hardware cost and power/energy consumption. Modern neural networks usually imply a huge amount of parameters which cannot be fit into embedded devices. Compression of the deep learning models together with acceleration attracts our attention. We introduce the structured matrices based neural network to address this problem. Circulant matrix is one of the structured matrices, where a matrix can be represented using a single vector, so that the matrix is compressed. We further investigate a more flexible structure based on circulant matrix, called block-circulant matrix. It partitions a matrix into several smaller blocks and makes each submatrix is circulant. The compression ratio is controllable. With the help of Fourier Transform based equivalent computation, the inference of the deep neural network can be accelerated energy efficiently on the FPGAs. We also offer the optimization for the training algorithm for block circulant matrices based neural networks to obtain a high accuracy after compression.
ISBN: 9780438816091Subjects--Topical Terms:
1567821
Computer Engineering.
Efficient Machine Learning: Models and Accelerations.
LDR
:04778nmm a2200325 4500
001
2264489
005
20200504070428.5
008
220629s2018 ||||||||||||||||| ||eng d
020
$a
9780438816091
035
$a
(MiAaPQ)AAI13420726
035
$a
(MiAaPQ)syr:12032
035
$a
AAI13420726
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Li, Zhe.
$3
1264118
245
1 0
$a
Efficient Machine Learning: Models and Accelerations.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2018
300
$a
180 p.
500
$a
Source: Dissertations Abstracts International, Volume: 80-08, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Qiu, Qinru.
502
$a
Thesis (Ph.D.)--Syracuse University, 2018.
506
$a
This item must not be sold to any third party vendors.
520
$a
One of the key enablers of the recent unprecedented success of machine learning is the adoption of very large models. Modern machine learning models typically consist of multiple cascaded layers such as deep neural networks, and at least millions to hundreds of millions of parameters (i.e., weights) for the entire model. The larger-scale model tend to enable the extraction of more complex high-level features, and therefore, lead to a significant improvement of the overall accuracy. On the other side, the layered deep structure and large model sizes also demand to increase computational capability and memory requirements. In order to achieve higher scalability, performance, and energy efficiency for deep learning systems, two orthogonal research and development trends have attracted enormous interests. The first trend is the acceleration while the second is the model compression. The underlying goal of these two trends is the high quality of the models to provides accurate predictions. In this thesis, we address these two problems and utilize different computing paradigms to solve real-life deep learning problems. To explore in these two domains, this thesis first presents the cogent confabulation network for sentence completion problem. We use Chinese language as a case study to describe our exploration of the cogent confabulation based text recognition models. The exploration and optimization of the cogent confabulation based models have been conducted through various comparisons. The optimized network offered a better accuracy performance for the sentence completion. To accelerate the sentence completion problem in a multi-processing system, we propose a parallel framework for the confabulation recall algorithm. The parallel implementation reduce runtime, improve the recall accuracy by breaking the fixed evaluation order and introducing more generalization, and maintain a balanced progress in status update among all neurons. A lexicon scheduling algorithm is presented to further improve the model performance. As deep neural networks have been proven effective to solve many real-life applications, and they are deployed on low-power devices, we then investigated the acceleration for the neural network inference using a hardware-friendly computing paradigm, stochastic computing. It is an approximate computing paradigm which requires small hardware footprint and achieves high energy efficiency. Applying this stochastic computing to deep convolutional neural networks, we design the functional hardware blocks and optimize them jointly to minimize the accuracy loss due to the approximation. The synthesis results show that the proposed design achieves the remarkable low hardware cost and power/energy consumption. Modern neural networks usually imply a huge amount of parameters which cannot be fit into embedded devices. Compression of the deep learning models together with acceleration attracts our attention. We introduce the structured matrices based neural network to address this problem. Circulant matrix is one of the structured matrices, where a matrix can be represented using a single vector, so that the matrix is compressed. We further investigate a more flexible structure based on circulant matrix, called block-circulant matrix. It partitions a matrix into several smaller blocks and makes each submatrix is circulant. The compression ratio is controllable. With the help of Fourier Transform based equivalent computation, the inference of the deep neural network can be accelerated energy efficiently on the FPGAs. We also offer the optimization for the training algorithm for block circulant matrices based neural networks to obtain a high accuracy after compression.
590
$a
School code: 0659.
650
4
$a
Computer Engineering.
$3
1567821
650
4
$a
Computer science.
$3
523869
690
$a
0464
690
$a
0984
710
2
$a
Syracuse University.
$b
Electrical Engineering and Computer Science.
$3
3169988
773
0
$t
Dissertations Abstracts International
$g
80-08B.
790
$a
0659
791
$a
Ph.D.
792
$a
2018
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13420726
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9416723
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入