語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Sufficient Conditions for Optimal Co...
~
Bhan, Sankalp Kishan.
FindBook
Google Book
Amazon
博客來
Sufficient Conditions for Optimal Control Problems with Terminal Constraints and Free Terminal Times with Applications to Aerospace.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Sufficient Conditions for Optimal Control Problems with Terminal Constraints and Free Terminal Times with Applications to Aerospace./
作者:
Bhan, Sankalp Kishan.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
163 p.
附註:
Source: Dissertations Abstracts International, Volume: 80-10, Section: B.
Contained By:
Dissertations Abstracts International80-10B.
標題:
Applied Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13862113
ISBN:
9781392074763
Sufficient Conditions for Optimal Control Problems with Terminal Constraints and Free Terminal Times with Applications to Aerospace.
Bhan, Sankalp Kishan.
Sufficient Conditions for Optimal Control Problems with Terminal Constraints and Free Terminal Times with Applications to Aerospace.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 163 p.
Source: Dissertations Abstracts International, Volume: 80-10, Section: B.
Thesis (D.Sc.)--Washington University in St. Louis, 2019.
This item must not be sold to any third party vendors.
Motivated by the flight control problem of designing control laws for a Ground Collision Avoidance System (GCAS), this thesis formulates sufficient conditions for a strong local minimum for a terminally constrained optimal control problem with a free-terminal time. The conditions develop within the framework of a construction of a field of extremals by means of the method of characteristics, a procedure for the solution of first-order linear partial differential equations, but modified to apply to the Hamilton-Jacobi-Bellman equation of optimal control. Additionally, the thesis constructs these sufficient conditions for optimality with a mathematically rigorous development. The proof uses an approach which generalizes and differs significantly from procedures outlined in the classical literature on control engineering, where similar formulas are derived, but only in a cursory, formal and sometimes incomplete way. Additionally, the thesis gives new arrangements of the relevant expressions arising in the formulation of sufficient conditions for optimality that lead to more concise formulas for the resulting perturbation feedback control schemes. These results are applied to an emergency perturbation-feedback guidance scheme which recovers an aircraft from a dangerous flight-path angle to a safe one. Discussion of required background material contrasts nonlinear and linear optimal control theory are contrasted in the context of aerospace applications. A simplified version of the classical model for an F-16 fighter aircraft is used in numerical computation to very, by example, that the sufficient conditions for optimality developed in this thesis can be used off-line to detect possible failures in perturbation feedback control schemes, which arise if such methods are applied along extremal controlled trajectories and which only satisfy the necessary conditions for optimality without being locally optimal. The sufficient conditions for optimality developed in this thesis, on the other hand, guarantee the local validity of such perturbation feedback control schemes. This thesis presents various graphs that compare the neighboring extremals which were derived from the perturbation feedback control scheme with optimal ones that start from the same initial condition. Future directions for this work include extending the perturbation feedback control schemes to optimization problems that are further constrained, possibly through control constraints, state-space constraints or mixed state-control constraints.
ISBN: 9781392074763Subjects--Topical Terms:
1669109
Applied Mathematics.
Sufficient Conditions for Optimal Control Problems with Terminal Constraints and Free Terminal Times with Applications to Aerospace.
LDR
:03707nmm a2200337 4500
001
2263974
005
20200331094433.5
008
220629s2019 ||||||||||||||||| ||eng d
020
$a
9781392074763
035
$a
(MiAaPQ)AAI13862113
035
$a
(MiAaPQ)wustl:12818
035
$a
AAI13862113
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Bhan, Sankalp Kishan.
$3
3541072
245
1 0
$a
Sufficient Conditions for Optimal Control Problems with Terminal Constraints and Free Terminal Times with Applications to Aerospace.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
163 p.
500
$a
Source: Dissertations Abstracts International, Volume: 80-10, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Schaettler, Heinz.
502
$a
Thesis (D.Sc.)--Washington University in St. Louis, 2019.
506
$a
This item must not be sold to any third party vendors.
520
$a
Motivated by the flight control problem of designing control laws for a Ground Collision Avoidance System (GCAS), this thesis formulates sufficient conditions for a strong local minimum for a terminally constrained optimal control problem with a free-terminal time. The conditions develop within the framework of a construction of a field of extremals by means of the method of characteristics, a procedure for the solution of first-order linear partial differential equations, but modified to apply to the Hamilton-Jacobi-Bellman equation of optimal control. Additionally, the thesis constructs these sufficient conditions for optimality with a mathematically rigorous development. The proof uses an approach which generalizes and differs significantly from procedures outlined in the classical literature on control engineering, where similar formulas are derived, but only in a cursory, formal and sometimes incomplete way. Additionally, the thesis gives new arrangements of the relevant expressions arising in the formulation of sufficient conditions for optimality that lead to more concise formulas for the resulting perturbation feedback control schemes. These results are applied to an emergency perturbation-feedback guidance scheme which recovers an aircraft from a dangerous flight-path angle to a safe one. Discussion of required background material contrasts nonlinear and linear optimal control theory are contrasted in the context of aerospace applications. A simplified version of the classical model for an F-16 fighter aircraft is used in numerical computation to very, by example, that the sufficient conditions for optimality developed in this thesis can be used off-line to detect possible failures in perturbation feedback control schemes, which arise if such methods are applied along extremal controlled trajectories and which only satisfy the necessary conditions for optimality without being locally optimal. The sufficient conditions for optimality developed in this thesis, on the other hand, guarantee the local validity of such perturbation feedback control schemes. This thesis presents various graphs that compare the neighboring extremals which were derived from the perturbation feedback control scheme with optimal ones that start from the same initial condition. Future directions for this work include extending the perturbation feedback control schemes to optimization problems that are further constrained, possibly through control constraints, state-space constraints or mixed state-control constraints.
590
$a
School code: 0252.
650
4
$a
Applied Mathematics.
$3
1669109
650
4
$a
Aerospace engineering.
$3
1002622
650
4
$a
Systems science.
$3
3168411
690
$a
0364
690
$a
0538
690
$a
0790
710
2
$a
Washington University in St. Louis.
$b
Systems Science & Mathematics.
$3
3541073
773
0
$t
Dissertations Abstracts International
$g
80-10B.
790
$a
0252
791
$a
D.Sc.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13862113
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9416208
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入