語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Analytical and Numerical Modeling of...
~
Familkhalili, Ramin.
FindBook
Google Book
Amazon
博客來
Analytical and Numerical Modeling of Long Term Changes to Tides, Storm Surge, and Total Water Level Due to Bathymetric Changes and Surge Characteristics.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Analytical and Numerical Modeling of Long Term Changes to Tides, Storm Surge, and Total Water Level Due to Bathymetric Changes and Surge Characteristics./
作者:
Familkhalili, Ramin.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
188 p.
附註:
Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Contained By:
Dissertations Abstracts International81-04B.
標題:
Civil engineering. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13895326
ISBN:
9781085649254
Analytical and Numerical Modeling of Long Term Changes to Tides, Storm Surge, and Total Water Level Due to Bathymetric Changes and Surge Characteristics.
Familkhalili, Ramin.
Analytical and Numerical Modeling of Long Term Changes to Tides, Storm Surge, and Total Water Level Due to Bathymetric Changes and Surge Characteristics.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 188 p.
Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Thesis (Ph.D.)--Portland State University, 2019.
This item must not be sold to any third party vendors.
Natural and local anthropogenic changes in estuaries (e.g., sea-level rise, navigation channel construction and loss of wetlands) interact with each other and produce non-linear effects. There is also a growing recognition that tides in estuaries are not stationary. These factors together are changing the estuarine water level regime, however the implications for extreme water levels remain largely unknown. Changes over the past century in many estuaries, such as channel deepening and streamlining for navigation have significantly altered the hydrodynamics of long waves, often resulting in amplified tides (a ~85% increase in Wilmington, NC since 1900) and storm surge in estuaries. This research focuses on establishing analytical and numerical models that simulate a wide range of systems and flow conditions that combine multiple flood sources: astronomical tide, storm surge, and high river flow. To investigate the effects of estuarine bathymetry conditions (e.g., channel depth, convergence length), hurricane conditions (e.g., pressure and wind field), river discharge, and surge characteristics (e.g., time scale and amplitude and relative phase) on tide and storm surge propagation, I develop an idealized analytical model and two numerical models using Delft-3D. The Cape Fear River Estuary, NC (CFRE), and St Johns River Estuary, FL (SJRE) are used as case studies to investigate flood dynamics. The analytical approach has been compared and verified with idealized numerical models.I use data recovery, data analysis, and idealized numerical modeling of the CFRE to investigate the effects of bathymetric changes (e.g., dredging and channel modification) on tidal and storm surge characteristics over the past 130 years. Data analysis and modeling results suggest that long-term changes in tides can be used along with the tidal analysis tools to investigate changes in storm surge. Analysis indicate that tidal range in Wilmington, NC (Rkm 47) has doubled to 1.55m since the 1880s, while a much smaller increase of 0.07m observed close to the ocean in Southport (Rkm 6) since the 1920s. Further, model results suggest that the majority of long term changes in tides of this system have been caused by deepening the system from 7m to 15.5m due to dredging, rather than by changes in the coastal tides. Numerical modeling using idealized, parametric tropical cyclones suggests that the amplitude of the worst-case, CAT-5 storm surge has increased by 40-60% since the nineteenth century.Storm surges are meteorologically forced shallow water waves with time scales that overlap those of the tidal bands. Using data, I show that the surge wave can be decomposed into two sinusoidal waves. Therefore, I analytically model surge via a 3-constituent analytical tide model, where the third constituent is the dominant semi-diurnal tide and friction is linearized via Chebyshev polynomials. A constant discharge is considered to approximate fluvial effects The analytical model is used to study how surge amplitude, surge time scale, and surge-tide relative phase affect the spatial pattern of amplitude growth and decay, and how depth changes caused by channel deepening influence the magnitude of a storm surge. I use non-dimensional numbers to investigate how channel depth, surge time scale and amplitude, surge asymmetry, and relative timing of surge to tides alter the damping or amplification of surge along the estuary. The non-dimensional numbers suggest that increasing depth has similar effects as decreasing the drag coefficient. Similarly, larger time scale has an equivalent effect on tide and surge as increasing depth due to channel deepening. Analytical model results show that the extent of the surge amplification is dependent on the geometry of the estuary (e.g., depth and convergence length) and characteristics of the surge wave. Both models show that much of the alterations of water levels in estuaries is due to channel deepening for navigation purposes and that the largest temporal change occur for surges with a high surge to D_2 amplitude ratio and a short time scale. Model results farther indicate that surge amplitude decays more slowly (larger e-folding) in a deeper channel for all surge time scales (12hr-72hr). Another main finding is that, due to nonlinear friction, the location of maximum change in surge wave moves landward as the channel is deepened. Thus, changes in flood risk due to channel deepening are likely spatially variable even within a single estuary.Next, I use the verified analytical model and numerical models to investigate the effects of river flow on surge wave propagation, and spatial and temporal variability of compound flooding along an estuary. To model the historic SJRE, I digitize nautical charts of SJRE to develop a numerical model. Both the numerical and analytical models are used to investigate the contribution of tide, surge, and river flow to the peak water level for historic and modern system configurations. Numerical modeling results for hurricane Irma (2017) show that maximum flood water levels have shifted landward over time and changed the relative importance of the various contributing factors in the SJRE. Deepening the shipping channel from 5.5m to 15m has reduced the impacts of river flow on peak water level, but increased the effects of tide and surge. Sensitivity studies also show that peak water level decreases landward for all river flow scenarios as channel depth increases. Model results show that the timing of peak river flow relative to the time of maximum surge causes very large changes in the amplitude of total water level, and in river flow effects at upstream locations for modern configuration than for the historic model. Changes in surge amplitudes can be interpreted by the non-dimensional friction number (ψ=(C_d ξω2 L_e3)/(gh3 )), which shows that depth (h), surge time scale (T=1/ω), and convergence length-scale (Le) affect the damping/amplification of both tides and surge waves.Overall, this study demonstrates that a system scale alteration in local storm surge dynamics over the past century is likely to have occurred in many systems and should be considered for system management. The results of this research give the scientists and engineer a better understanding of tide, river flow, and surge interactions, and thereby contribute to an understanding of how to predict storm surges and help mitigate their destructive impacts. Future system design studies also need to consider long-term and changes of construction and development activities on storm surge risk in a broader context than has historically been the case.
ISBN: 9781085649254Subjects--Topical Terms:
860360
Civil engineering.
Analytical and Numerical Modeling of Long Term Changes to Tides, Storm Surge, and Total Water Level Due to Bathymetric Changes and Surge Characteristics.
LDR
:07825nmm a2200361 4500
001
2263417
005
20200316072007.5
008
220629s2019 ||||||||||||||||| ||eng d
020
$a
9781085649254
035
$a
(MiAaPQ)AAI13895326
035
$a
AAI13895326
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Familkhalili, Ramin.
$3
3540506
245
1 0
$a
Analytical and Numerical Modeling of Long Term Changes to Tides, Storm Surge, and Total Water Level Due to Bathymetric Changes and Surge Characteristics.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
188 p.
500
$a
Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
500
$a
Advisor: Talke, Stefan A.
502
$a
Thesis (Ph.D.)--Portland State University, 2019.
506
$a
This item must not be sold to any third party vendors.
520
$a
Natural and local anthropogenic changes in estuaries (e.g., sea-level rise, navigation channel construction and loss of wetlands) interact with each other and produce non-linear effects. There is also a growing recognition that tides in estuaries are not stationary. These factors together are changing the estuarine water level regime, however the implications for extreme water levels remain largely unknown. Changes over the past century in many estuaries, such as channel deepening and streamlining for navigation have significantly altered the hydrodynamics of long waves, often resulting in amplified tides (a ~85% increase in Wilmington, NC since 1900) and storm surge in estuaries. This research focuses on establishing analytical and numerical models that simulate a wide range of systems and flow conditions that combine multiple flood sources: astronomical tide, storm surge, and high river flow. To investigate the effects of estuarine bathymetry conditions (e.g., channel depth, convergence length), hurricane conditions (e.g., pressure and wind field), river discharge, and surge characteristics (e.g., time scale and amplitude and relative phase) on tide and storm surge propagation, I develop an idealized analytical model and two numerical models using Delft-3D. The Cape Fear River Estuary, NC (CFRE), and St Johns River Estuary, FL (SJRE) are used as case studies to investigate flood dynamics. The analytical approach has been compared and verified with idealized numerical models.I use data recovery, data analysis, and idealized numerical modeling of the CFRE to investigate the effects of bathymetric changes (e.g., dredging and channel modification) on tidal and storm surge characteristics over the past 130 years. Data analysis and modeling results suggest that long-term changes in tides can be used along with the tidal analysis tools to investigate changes in storm surge. Analysis indicate that tidal range in Wilmington, NC (Rkm 47) has doubled to 1.55m since the 1880s, while a much smaller increase of 0.07m observed close to the ocean in Southport (Rkm 6) since the 1920s. Further, model results suggest that the majority of long term changes in tides of this system have been caused by deepening the system from 7m to 15.5m due to dredging, rather than by changes in the coastal tides. Numerical modeling using idealized, parametric tropical cyclones suggests that the amplitude of the worst-case, CAT-5 storm surge has increased by 40-60% since the nineteenth century.Storm surges are meteorologically forced shallow water waves with time scales that overlap those of the tidal bands. Using data, I show that the surge wave can be decomposed into two sinusoidal waves. Therefore, I analytically model surge via a 3-constituent analytical tide model, where the third constituent is the dominant semi-diurnal tide and friction is linearized via Chebyshev polynomials. A constant discharge is considered to approximate fluvial effects The analytical model is used to study how surge amplitude, surge time scale, and surge-tide relative phase affect the spatial pattern of amplitude growth and decay, and how depth changes caused by channel deepening influence the magnitude of a storm surge. I use non-dimensional numbers to investigate how channel depth, surge time scale and amplitude, surge asymmetry, and relative timing of surge to tides alter the damping or amplification of surge along the estuary. The non-dimensional numbers suggest that increasing depth has similar effects as decreasing the drag coefficient. Similarly, larger time scale has an equivalent effect on tide and surge as increasing depth due to channel deepening. Analytical model results show that the extent of the surge amplification is dependent on the geometry of the estuary (e.g., depth and convergence length) and characteristics of the surge wave. Both models show that much of the alterations of water levels in estuaries is due to channel deepening for navigation purposes and that the largest temporal change occur for surges with a high surge to D_2 amplitude ratio and a short time scale. Model results farther indicate that surge amplitude decays more slowly (larger e-folding) in a deeper channel for all surge time scales (12hr-72hr). Another main finding is that, due to nonlinear friction, the location of maximum change in surge wave moves landward as the channel is deepened. Thus, changes in flood risk due to channel deepening are likely spatially variable even within a single estuary.Next, I use the verified analytical model and numerical models to investigate the effects of river flow on surge wave propagation, and spatial and temporal variability of compound flooding along an estuary. To model the historic SJRE, I digitize nautical charts of SJRE to develop a numerical model. Both the numerical and analytical models are used to investigate the contribution of tide, surge, and river flow to the peak water level for historic and modern system configurations. Numerical modeling results for hurricane Irma (2017) show that maximum flood water levels have shifted landward over time and changed the relative importance of the various contributing factors in the SJRE. Deepening the shipping channel from 5.5m to 15m has reduced the impacts of river flow on peak water level, but increased the effects of tide and surge. Sensitivity studies also show that peak water level decreases landward for all river flow scenarios as channel depth increases. Model results show that the timing of peak river flow relative to the time of maximum surge causes very large changes in the amplitude of total water level, and in river flow effects at upstream locations for modern configuration than for the historic model. Changes in surge amplitudes can be interpreted by the non-dimensional friction number (ψ=(C_d ξω2 L_e3)/(gh3 )), which shows that depth (h), surge time scale (T=1/ω), and convergence length-scale (Le) affect the damping/amplification of both tides and surge waves.Overall, this study demonstrates that a system scale alteration in local storm surge dynamics over the past century is likely to have occurred in many systems and should be considered for system management. The results of this research give the scientists and engineer a better understanding of tide, river flow, and surge interactions, and thereby contribute to an understanding of how to predict storm surges and help mitigate their destructive impacts. Future system design studies also need to consider long-term and changes of construction and development activities on storm surge risk in a broader context than has historically been the case.
590
$a
School code: 0180.
650
4
$a
Civil engineering.
$3
860360
650
4
$a
Ecology.
$3
516476
650
4
$a
Aquatic sciences.
$3
3174300
650
4
$a
Hydrologic sciences.
$3
3168407
650
4
$a
Physical oceanography.
$3
3168433
650
4
$a
Marine geology.
$3
3173821
650
4
$a
Climate change.
$2
bicssc
$3
2079509
690
$a
0543
690
$a
0792
690
$a
0388
690
$a
0404
690
$a
0415
690
$a
0556
690
$a
0329
710
2
$a
Portland State University.
$b
Civil and Environmental Engineering.
$3
3169102
773
0
$t
Dissertations Abstracts International
$g
81-04B.
790
$a
0180
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13895326
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9415651
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入