語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Crops, Canopies and Waiting for Rain...
~
Clark, Benjamin D.
FindBook
Google Book
Amazon
博客來
Crops, Canopies and Waiting for Rain Water for Small-Plot Agricultural Production in the Tropics.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Crops, Canopies and Waiting for Rain Water for Small-Plot Agricultural Production in the Tropics./
作者:
Clark, Benjamin D.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
153 p.
附註:
Source: Dissertations Abstracts International, Volume: 80-09, Section: B.
Contained By:
Dissertations Abstracts International80-09B.
標題:
Ecology. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13805567
ISBN:
9780438892750
Crops, Canopies and Waiting for Rain Water for Small-Plot Agricultural Production in the Tropics.
Clark, Benjamin D.
Crops, Canopies and Waiting for Rain Water for Small-Plot Agricultural Production in the Tropics.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 153 p.
Source: Dissertations Abstracts International, Volume: 80-09, Section: B.
Thesis (Ph.D.)--Columbia University, 2019.
This item must not be sold to any third party vendors.
Water will become increasingly scarce in the 21st century. Agriculture dominates anthropogenic water use and accounts for about 70% of water withdrawals globally. Unique challenges face tropical small-plot agricultural water management that differs from region to region. This dissertation examines two challenges facing tropical small-plot agriculture. Chapter 2 uses an experimental trial in Western Tanzania to create a unique longitudinal dataset of crop water stress measured over the growing season. The trial tests the effect of seed variety and fertilizer treatment on crop water stress over the growing season and during dry spells. Results demonstrate that hybrid varieties yield significantly more than the locally adapted traditional variety because they are better able to access nutrients and have better stomatal regulation over dry spells. Chapters 3 and 4 shift the focus to India. Chapter 3 characterizes the inter-annual dynamics of anthropogenic water stress across the Central Indian Highlands (CIH), while Chapter 4 examines the hydrological impacts of increasing forest cover on regional water supply and its implications for sustainable irrigation as well as food production. Within Chapter 3, I use extensive data sourced from the Indian government to spatially characterize water demand over the past decade by spatially mapping multiple waves of the Minor Irrigation Scheme Census and Livestock Census collected at the household level, along with monthly power generation datasets. The patio-temporal water demand data is coupled with remotely sensed precipitation and evapotranspiration data to force a customized Sacramento Soil Moisture Accounting Model that computes water supply. Finally, I developed a Groundwater Supply Stress Index to account for the impact of irrigation groundwater withdrawals over the course of the year. Chapter 3 finds that 70% of CIH is water-stressed during some portion of the year and that irrigation makes up approximately 95% of anthropogenic water withdrawals. Chapter 4 extends the findings of chapter 3 in utilizing the infiltration-evapotranspiration trade-off hypothesis to understand the impact of converting croplands to forest on groundwater recharge within the CIH. In this Chapter, I collected and analyzed field data on field-saturated hydraulic conductivity to find that forested land has significantly higher infiltration rates than croplands. These finding are then included in a Spatial Processes in Hydrology model to simulate intra-annual hydrological dynamics of current forest cover versus a forest cover increased to 30% within the river basins of the CIH. Increased forest cover is one of India's Nationally Determined Commitments at COP21 within the Mission to Green India with a stated aim of improving landscape hydrological functioning. I demonstrate that forest cover increase has the potential to increase groundwater recharge, which could be used to irrigate a second growing season and help offset the loss of cropland through conversion to forest. Collectively, these three chapters harness multiple sources of data and leverage a wide array of innovative methods at multiple scales to shed light on important water management issues faced by small-plot agriculture in the tropics and on opportunities for better agricultural water resource management across two continents.
ISBN: 9780438892750Subjects--Topical Terms:
516476
Ecology.
Crops, Canopies and Waiting for Rain Water for Small-Plot Agricultural Production in the Tropics.
LDR
:04474nmm a2200337 4500
001
2263159
005
20200214113200.5
008
220629s2019 ||||||||||||||||| ||eng d
020
$a
9780438892750
035
$a
(MiAaPQ)AAI13805567
035
$a
(MiAaPQ)columbia:15079
035
$a
AAI13805567
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Clark, Benjamin D.
$3
3540243
245
1 0
$a
Crops, Canopies and Waiting for Rain Water for Small-Plot Agricultural Production in the Tropics.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
153 p.
500
$a
Source: Dissertations Abstracts International, Volume: 80-09, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Defries, Ruth.
502
$a
Thesis (Ph.D.)--Columbia University, 2019.
506
$a
This item must not be sold to any third party vendors.
520
$a
Water will become increasingly scarce in the 21st century. Agriculture dominates anthropogenic water use and accounts for about 70% of water withdrawals globally. Unique challenges face tropical small-plot agricultural water management that differs from region to region. This dissertation examines two challenges facing tropical small-plot agriculture. Chapter 2 uses an experimental trial in Western Tanzania to create a unique longitudinal dataset of crop water stress measured over the growing season. The trial tests the effect of seed variety and fertilizer treatment on crop water stress over the growing season and during dry spells. Results demonstrate that hybrid varieties yield significantly more than the locally adapted traditional variety because they are better able to access nutrients and have better stomatal regulation over dry spells. Chapters 3 and 4 shift the focus to India. Chapter 3 characterizes the inter-annual dynamics of anthropogenic water stress across the Central Indian Highlands (CIH), while Chapter 4 examines the hydrological impacts of increasing forest cover on regional water supply and its implications for sustainable irrigation as well as food production. Within Chapter 3, I use extensive data sourced from the Indian government to spatially characterize water demand over the past decade by spatially mapping multiple waves of the Minor Irrigation Scheme Census and Livestock Census collected at the household level, along with monthly power generation datasets. The patio-temporal water demand data is coupled with remotely sensed precipitation and evapotranspiration data to force a customized Sacramento Soil Moisture Accounting Model that computes water supply. Finally, I developed a Groundwater Supply Stress Index to account for the impact of irrigation groundwater withdrawals over the course of the year. Chapter 3 finds that 70% of CIH is water-stressed during some portion of the year and that irrigation makes up approximately 95% of anthropogenic water withdrawals. Chapter 4 extends the findings of chapter 3 in utilizing the infiltration-evapotranspiration trade-off hypothesis to understand the impact of converting croplands to forest on groundwater recharge within the CIH. In this Chapter, I collected and analyzed field data on field-saturated hydraulic conductivity to find that forested land has significantly higher infiltration rates than croplands. These finding are then included in a Spatial Processes in Hydrology model to simulate intra-annual hydrological dynamics of current forest cover versus a forest cover increased to 30% within the river basins of the CIH. Increased forest cover is one of India's Nationally Determined Commitments at COP21 within the Mission to Green India with a stated aim of improving landscape hydrological functioning. I demonstrate that forest cover increase has the potential to increase groundwater recharge, which could be used to irrigate a second growing season and help offset the loss of cropland through conversion to forest. Collectively, these three chapters harness multiple sources of data and leverage a wide array of innovative methods at multiple scales to shed light on important water management issues faced by small-plot agriculture in the tropics and on opportunities for better agricultural water resource management across two continents.
590
$a
School code: 0054.
650
4
$a
Ecology.
$3
516476
650
4
$a
Hydrologic sciences.
$3
3168407
650
4
$a
Agriculture.
$3
518588
690
$a
0329
690
$a
0388
690
$a
0473
710
2
$a
Columbia University.
$b
Ecology, Evolution and Environmental Biology.
$3
3181803
773
0
$t
Dissertations Abstracts International
$g
80-09B.
790
$a
0054
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13805567
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9415393
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入