語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Advances in uncertainty quantificati...
~
International Conference on Uncertainty Quantification and Optimization ((2020 :)
FindBook
Google Book
Amazon
博客來
Advances in uncertainty quantification and optimization under uncertainty with aerospace applications = proceedings of the 2020 UQOP International Conference /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Advances in uncertainty quantification and optimization under uncertainty with aerospace applications/ edited by Massimiliano Vasile, Domenico Quagliarella.
其他題名:
proceedings of the 2020 UQOP International Conference /
其他作者:
Vasile, Massimiliano.
團體作者:
International Conference on Uncertainty Quantification and Optimization
出版者:
Cham :Springer International Publishing : : 2021.,
面頁冊數:
1 online resource (ix, 457 p.) :ill., digital ;24 cm.
內容註:
Chapter 1. Cloud Uncertainty Quantification for Runback Ice Formations in Anti-Ice Electro-Thermal Ice Protection Systems -- Chapter 2. Multi-fidelity Surrogate Assisted Design Optimisation of an Airfoil under Uncertainty using Far-Field Drag Approximation -- Chapter 3. Scalable dynamic asynchronous Monte Carlo framework applied to wind engineering problems -- Chapter 4. Multi-Objective Optimal Design and Maintenance for Systems Based on Calendar Times Using MOEA/D-DE -- Chapter 5. From Uncertainty Quanti cation to Shape Optimization: Cross-Fertilization of Methods for Dimensionality Reduction -- Chapter 6. Multi-Objective Robustness Analysis of the Polymer Extrusion Process -- Chapter 7. Quantification of operational and geometrical uncertainties of a 1.5 stage axial compressor with cavity leakage flows -- Chapter 8. Can Uncertainty Propagation Solve the Mysterious Case of Snoopy ? -- Chapter 9. Robust Particle Filter for Space Navigation under Epistemic Uncertainty -- Chapter 10. Computing bounds for imprecise continuous-time Markov chains using normal cones -- Chapter 11. Simultaneous Sampling for Robust Markov Chain Monte Carlo Inference -- Chapter 12. Computing Expected Hitting Times for Imprecise Markov Chains -- Chapter 13. Multi-Objective Robust Trajectory Optimization of Multi Asteroid Fly-By Under Epistemic Uncertainty -- Chapter 14. Reliability-based Robust Design Optimization of a Jet Engine Nacelle -- Chapter 15. Bayesian Optimization for Robust Solutions under Uncertain Input -- Chapter 16. Optimization under Uncertainty of Shock Control Bumps for Transonic Wings -- Chapter 17. Multi-objective design optimisation of an airfoil with geometrical uncertainties leveraging multi- delity Gaussian process regression -- Chapter 18. High-Lift Devices Topology Robust Optimisation using Machine Learning Assisted Optimisation -- Chapter 19. Network Resilience Optimisation of Complex Systems -- Chapter 20. Gaussian Processes for CVaR approximation in Robust Aerodynamic Shape Design -- Chapter 21. Inference methods for gas/surface interaction models: from deterministic approaches to Bayesian techniques -- Chapter 22. Bayesian Adaptive Selection Under Prior Ignorance -- Chapter 23. A Machine-Learning Framework for Plasma-Assisted Combustion using Principal Component Analysis and Gaussian Process Regression -- Chapter 24. Estimating exposure fraction from radiation biomarkers: a comparison of frequentist and Bayesian approaches -- Chapter 25. A Review of some recent advancements in Non-Ideal Compressible Fluid Dynamics -- Chapter 26. Dealing with high dimensional inconsistent measurements in inverse problems using surrogate modeling: an approach based on sets and intervals -- Chapter 27. Stochastic Preconditioners for Domain Decomposition Methods -- Index.
Contained By:
Springer Nature eBook
標題:
Aeronautics - Congresses. - Statistical methods -
電子資源:
https://doi.org/10.1007/978-3-030-80542-5
ISBN:
9783030805425
Advances in uncertainty quantification and optimization under uncertainty with aerospace applications = proceedings of the 2020 UQOP International Conference /
Advances in uncertainty quantification and optimization under uncertainty with aerospace applications
proceedings of the 2020 UQOP International Conference /[electronic resource] :edited by Massimiliano Vasile, Domenico Quagliarella. - Cham :Springer International Publishing :2021. - 1 online resource (ix, 457 p.) :ill., digital ;24 cm. - Space technology proceedings ;v. 8. - Space technology proceedings ;v. 8..
Chapter 1. Cloud Uncertainty Quantification for Runback Ice Formations in Anti-Ice Electro-Thermal Ice Protection Systems -- Chapter 2. Multi-fidelity Surrogate Assisted Design Optimisation of an Airfoil under Uncertainty using Far-Field Drag Approximation -- Chapter 3. Scalable dynamic asynchronous Monte Carlo framework applied to wind engineering problems -- Chapter 4. Multi-Objective Optimal Design and Maintenance for Systems Based on Calendar Times Using MOEA/D-DE -- Chapter 5. From Uncertainty Quanti cation to Shape Optimization: Cross-Fertilization of Methods for Dimensionality Reduction -- Chapter 6. Multi-Objective Robustness Analysis of the Polymer Extrusion Process -- Chapter 7. Quantification of operational and geometrical uncertainties of a 1.5 stage axial compressor with cavity leakage flows -- Chapter 8. Can Uncertainty Propagation Solve the Mysterious Case of Snoopy ? -- Chapter 9. Robust Particle Filter for Space Navigation under Epistemic Uncertainty -- Chapter 10. Computing bounds for imprecise continuous-time Markov chains using normal cones -- Chapter 11. Simultaneous Sampling for Robust Markov Chain Monte Carlo Inference -- Chapter 12. Computing Expected Hitting Times for Imprecise Markov Chains -- Chapter 13. Multi-Objective Robust Trajectory Optimization of Multi Asteroid Fly-By Under Epistemic Uncertainty -- Chapter 14. Reliability-based Robust Design Optimization of a Jet Engine Nacelle -- Chapter 15. Bayesian Optimization for Robust Solutions under Uncertain Input -- Chapter 16. Optimization under Uncertainty of Shock Control Bumps for Transonic Wings -- Chapter 17. Multi-objective design optimisation of an airfoil with geometrical uncertainties leveraging multi- delity Gaussian process regression -- Chapter 18. High-Lift Devices Topology Robust Optimisation using Machine Learning Assisted Optimisation -- Chapter 19. Network Resilience Optimisation of Complex Systems -- Chapter 20. Gaussian Processes for CVaR approximation in Robust Aerodynamic Shape Design -- Chapter 21. Inference methods for gas/surface interaction models: from deterministic approaches to Bayesian techniques -- Chapter 22. Bayesian Adaptive Selection Under Prior Ignorance -- Chapter 23. A Machine-Learning Framework for Plasma-Assisted Combustion using Principal Component Analysis and Gaussian Process Regression -- Chapter 24. Estimating exposure fraction from radiation biomarkers: a comparison of frequentist and Bayesian approaches -- Chapter 25. A Review of some recent advancements in Non-Ideal Compressible Fluid Dynamics -- Chapter 26. Dealing with high dimensional inconsistent measurements in inverse problems using surrogate modeling: an approach based on sets and intervals -- Chapter 27. Stochastic Preconditioners for Domain Decomposition Methods -- Index.
The 2020 International Conference on Uncertainty Quantification & Optimization gathered together internationally renowned researchers in the fields of optimization and uncertainty quantification. The resulting proceedings cover all related aspects of computational uncertainty management and optimization, with particular emphasis on aerospace engineering problems. The book contributions are organized under four major themes: Applications of Uncertainty in Aerospace & Engineering Imprecise Probability, Theory and Applications Robust and Reliability-Based Design Optimisation in Aerospace Engineering Uncertainty Quantification, Identification and Calibration in Aerospace Models This proceedings volume is useful across disciplines, as it brings the expertise of theoretical and application researchers together in a unified framework.
ISBN: 9783030805425
Standard No.: 10.1007/978-3-030-80542-5doiSubjects--Topical Terms:
3538912
Aeronautics
--Statistical methods--Congresses.
LC Class. No.: TL560 / I58 2020
Dewey Class. No.: 629.101519544
Advances in uncertainty quantification and optimization under uncertainty with aerospace applications = proceedings of the 2020 UQOP International Conference /
LDR
:04890nmm a2200361 a 4500
001
2262439
003
DE-He213
005
20220127131745.0
006
m o d
007
cr nn 008maaau
008
220616s2021 sz s 0 eng d
020
$a
9783030805425
$q
(electronic bk.)
020
$a
9783030805418
$q
(paper)
024
7
$a
10.1007/978-3-030-80542-5
$2
doi
035
$a
978-3-030-80542-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TL560
$b
I58 2020
072
7
$a
TRP
$2
bicssc
072
7
$a
TTDS
$2
bicssc
072
7
$a
TEC002000
$2
bisacsh
072
7
$a
TRP
$2
thema
072
7
$a
TTDS
$2
thema
082
0 4
$a
629.101519544
$2
23
090
$a
TL560
$b
.I61 2020
111
2
$a
International Conference on Uncertainty Quantification and Optimization
$d
(2020 :
$c
Online)
$3
3538909
245
1 0
$a
Advances in uncertainty quantification and optimization under uncertainty with aerospace applications
$h
[electronic resource] :
$b
proceedings of the 2020 UQOP International Conference /
$c
edited by Massimiliano Vasile, Domenico Quagliarella.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
1 online resource (ix, 457 p.) :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Space technology proceedings ;
$v
v. 8
505
0
$a
Chapter 1. Cloud Uncertainty Quantification for Runback Ice Formations in Anti-Ice Electro-Thermal Ice Protection Systems -- Chapter 2. Multi-fidelity Surrogate Assisted Design Optimisation of an Airfoil under Uncertainty using Far-Field Drag Approximation -- Chapter 3. Scalable dynamic asynchronous Monte Carlo framework applied to wind engineering problems -- Chapter 4. Multi-Objective Optimal Design and Maintenance for Systems Based on Calendar Times Using MOEA/D-DE -- Chapter 5. From Uncertainty Quanti cation to Shape Optimization: Cross-Fertilization of Methods for Dimensionality Reduction -- Chapter 6. Multi-Objective Robustness Analysis of the Polymer Extrusion Process -- Chapter 7. Quantification of operational and geometrical uncertainties of a 1.5 stage axial compressor with cavity leakage flows -- Chapter 8. Can Uncertainty Propagation Solve the Mysterious Case of Snoopy ? -- Chapter 9. Robust Particle Filter for Space Navigation under Epistemic Uncertainty -- Chapter 10. Computing bounds for imprecise continuous-time Markov chains using normal cones -- Chapter 11. Simultaneous Sampling for Robust Markov Chain Monte Carlo Inference -- Chapter 12. Computing Expected Hitting Times for Imprecise Markov Chains -- Chapter 13. Multi-Objective Robust Trajectory Optimization of Multi Asteroid Fly-By Under Epistemic Uncertainty -- Chapter 14. Reliability-based Robust Design Optimization of a Jet Engine Nacelle -- Chapter 15. Bayesian Optimization for Robust Solutions under Uncertain Input -- Chapter 16. Optimization under Uncertainty of Shock Control Bumps for Transonic Wings -- Chapter 17. Multi-objective design optimisation of an airfoil with geometrical uncertainties leveraging multi- delity Gaussian process regression -- Chapter 18. High-Lift Devices Topology Robust Optimisation using Machine Learning Assisted Optimisation -- Chapter 19. Network Resilience Optimisation of Complex Systems -- Chapter 20. Gaussian Processes for CVaR approximation in Robust Aerodynamic Shape Design -- Chapter 21. Inference methods for gas/surface interaction models: from deterministic approaches to Bayesian techniques -- Chapter 22. Bayesian Adaptive Selection Under Prior Ignorance -- Chapter 23. A Machine-Learning Framework for Plasma-Assisted Combustion using Principal Component Analysis and Gaussian Process Regression -- Chapter 24. Estimating exposure fraction from radiation biomarkers: a comparison of frequentist and Bayesian approaches -- Chapter 25. A Review of some recent advancements in Non-Ideal Compressible Fluid Dynamics -- Chapter 26. Dealing with high dimensional inconsistent measurements in inverse problems using surrogate modeling: an approach based on sets and intervals -- Chapter 27. Stochastic Preconditioners for Domain Decomposition Methods -- Index.
520
$a
The 2020 International Conference on Uncertainty Quantification & Optimization gathered together internationally renowned researchers in the fields of optimization and uncertainty quantification. The resulting proceedings cover all related aspects of computational uncertainty management and optimization, with particular emphasis on aerospace engineering problems. The book contributions are organized under four major themes: Applications of Uncertainty in Aerospace & Engineering Imprecise Probability, Theory and Applications Robust and Reliability-Based Design Optimisation in Aerospace Engineering Uncertainty Quantification, Identification and Calibration in Aerospace Models This proceedings volume is useful across disciplines, as it brings the expertise of theoretical and application researchers together in a unified framework.
650
0
$a
Aeronautics
$x
Statistical methods
$v
Congresses.
$3
3538912
650
0
$a
Mathematical optimization
$x
Congresses.
$3
647613
650
0
$a
Measurement uncertainty (Statistics)
$v
Congresses.
$3
3538913
650
1 4
$a
Aerospace Technology and Astronautics.
$3
928116
650
2 4
$a
Space Exploration and Astronautics.
$3
891060
650
2 4
$a
Optimization.
$3
891104
700
1
$a
Vasile, Massimiliano.
$3
3302382
700
1
$a
Quagliarella, D.
$3
3538910
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Space technology proceedings ;
$v
v. 8.
$3
3538911
856
4 0
$u
https://doi.org/10.1007/978-3-030-80542-5
950
$a
Physics and Astronomy (SpringerNature-11651)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9415152
電子資源
11.線上閱覽_V
電子書
EB TL560 I58 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入