語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Statistical mechanics of neural networks
~
Huang, Haiping.
FindBook
Google Book
Amazon
博客來
Statistical mechanics of neural networks
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Statistical mechanics of neural networks/ by Haiping Huang.
作者:
Huang, Haiping.
出版者:
Singapore :Springer Singapore : : 2021.,
面頁冊數:
xviii, 296 p. :ill., digital ;24 cm.
內容註:
Introduction -- Spin glass models and cavity method -- Variational mean-field theory and belief propagation -- Monte Carlo simulation methods -- High-temperature expansion -- Nishimori line -- Random energy model -- Statistical mechanical theory of Hopfield model -- Replica symmetry and replica symmetry breaking -- Statistical mechanics of restricted Boltzmann machine -- Simplest model of unsupervised learning with binary synapses -- Inherent-symmetry breaking in unsupervised learning -- Mean-field theory of Ising Perceptron -- Mean-field model of multi-layered Perceptron -- Mean-field theory of dimension reduction -- Chaos theory of random recurrent neural networks -- Statistical mechanics of random matrices -- Perspectives.
Contained By:
Springer Nature eBook
標題:
Neural networks (Computer science) - Statistical methods. -
電子資源:
https://doi.org/10.1007/978-981-16-7570-6
ISBN:
9789811675706
Statistical mechanics of neural networks
Huang, Haiping.
Statistical mechanics of neural networks
[electronic resource] /by Haiping Huang. - Singapore :Springer Singapore :2021. - xviii, 296 p. :ill., digital ;24 cm.
Introduction -- Spin glass models and cavity method -- Variational mean-field theory and belief propagation -- Monte Carlo simulation methods -- High-temperature expansion -- Nishimori line -- Random energy model -- Statistical mechanical theory of Hopfield model -- Replica symmetry and replica symmetry breaking -- Statistical mechanics of restricted Boltzmann machine -- Simplest model of unsupervised learning with binary synapses -- Inherent-symmetry breaking in unsupervised learning -- Mean-field theory of Ising Perceptron -- Mean-field model of multi-layered Perceptron -- Mean-field theory of dimension reduction -- Chaos theory of random recurrent neural networks -- Statistical mechanics of random matrices -- Perspectives.
This book highlights a comprehensive introduction to the fundamental statistical mechanics underneath the inner workings of neural networks. The book discusses in details important concepts and techniques including the cavity method, the mean-field theory, replica techniques, the Nishimori condition, variational methods, the dynamical mean-field theory, unsupervised learning, associative memory models, perceptron models, the chaos theory of recurrent neural networks, and eigen-spectrums of neural networks, walking new learners through the theories and must-have skillsets to understand and use neural networks. The book focuses on quantitative frameworks of neural network models where the underlying mechanisms can be precisely isolated by physics of mathematical beauty and theoretical predictions. It is a good reference for students, researchers, and practitioners in the area of neural networks.
ISBN: 9789811675706
Standard No.: 10.1007/978-981-16-7570-6doiSubjects--Topical Terms:
3538276
Neural networks (Computer science)
--Statistical methods.
LC Class. No.: QA76.87 / .H83 2021
Dewey Class. No.: 006.32
Statistical mechanics of neural networks
LDR
:02616nmm a2200325 a 4500
001
2262178
003
DE-He213
005
20220104014709.0
006
m d
007
cr nn 008maaau
008
220616s2021 si s 0 eng d
020
$a
9789811675706
$q
(electronic bk.)
020
$a
9789811675690
$q
(paper)
024
7
$a
10.1007/978-981-16-7570-6
$2
doi
035
$a
978-981-16-7570-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.87
$b
.H83 2021
072
7
$a
PHU
$2
bicssc
072
7
$a
SCI040000
$2
bisacsh
072
7
$a
PHU
$2
thema
082
0 4
$a
006.32
$2
23
090
$a
QA76.87
$b
.H874 2021
100
1
$a
Huang, Haiping.
$3
3538275
245
1 0
$a
Statistical mechanics of neural networks
$h
[electronic resource] /
$c
by Haiping Huang.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2021.
300
$a
xviii, 296 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Introduction -- Spin glass models and cavity method -- Variational mean-field theory and belief propagation -- Monte Carlo simulation methods -- High-temperature expansion -- Nishimori line -- Random energy model -- Statistical mechanical theory of Hopfield model -- Replica symmetry and replica symmetry breaking -- Statistical mechanics of restricted Boltzmann machine -- Simplest model of unsupervised learning with binary synapses -- Inherent-symmetry breaking in unsupervised learning -- Mean-field theory of Ising Perceptron -- Mean-field model of multi-layered Perceptron -- Mean-field theory of dimension reduction -- Chaos theory of random recurrent neural networks -- Statistical mechanics of random matrices -- Perspectives.
520
$a
This book highlights a comprehensive introduction to the fundamental statistical mechanics underneath the inner workings of neural networks. The book discusses in details important concepts and techniques including the cavity method, the mean-field theory, replica techniques, the Nishimori condition, variational methods, the dynamical mean-field theory, unsupervised learning, associative memory models, perceptron models, the chaos theory of recurrent neural networks, and eigen-spectrums of neural networks, walking new learners through the theories and must-have skillsets to understand and use neural networks. The book focuses on quantitative frameworks of neural network models where the underlying mechanisms can be precisely isolated by physics of mathematical beauty and theoretical predictions. It is a good reference for students, researchers, and practitioners in the area of neural networks.
650
0
$a
Neural networks (Computer science)
$x
Statistical methods.
$3
3538276
650
1 4
$a
Theoretical, Mathematical and Computational Physics.
$3
1066859
650
2 4
$a
Mathematical Models of Cognitive Processes and Neural Networks.
$3
1619875
650
2 4
$a
Theoretical and Computational Chemistry.
$3
890863
650
2 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Artificial Intelligence.
$3
769149
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-981-16-7570-6
950
$a
Physics and Astronomy (SpringerNature-11651)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9414891
電子資源
11.線上閱覽_V
電子書
EB QA76.87 .H83 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入