語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Explainable artificial intelligence:...
~
Kamath, Uday.
FindBook
Google Book
Amazon
博客來
Explainable artificial intelligence: an introduction to interpretable machine learning
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Explainable artificial intelligence: an introduction to interpretable machine learning/ by Uday Kamath, John Liu.
作者:
Kamath, Uday.
其他作者:
Liu, John.
出版者:
Cham :Springer International Publishing : : 2021.,
面頁冊數:
xxiii, 310 p. :ill. (chiefly col.), digital ;24 cm.
內容註:
1. Introduction to Interpretability and Explainability -- 2. Pre-Model Interpretability and Explainability -- 3. Model Visualization Techniques and Traditional Interpretable Algorithms -- 4. Model Interpretability: Advances in Interpretable Machine Learning -- 5. Post-hoc Interpretability and Explanations -- 6. Explainable Deep Learning -- 7. Explainability in Time Series Forecasting, Natural Language Processing, and Computer Vision -- 8. XAI: Challenges and Future.
Contained By:
Springer Nature eBook
標題:
Artificial intelligence. -
電子資源:
https://doi.org/10.1007/978-3-030-83356-5
ISBN:
9783030833565
Explainable artificial intelligence: an introduction to interpretable machine learning
Kamath, Uday.
Explainable artificial intelligence: an introduction to interpretable machine learning
[electronic resource] /by Uday Kamath, John Liu. - Cham :Springer International Publishing :2021. - xxiii, 310 p. :ill. (chiefly col.), digital ;24 cm.
1. Introduction to Interpretability and Explainability -- 2. Pre-Model Interpretability and Explainability -- 3. Model Visualization Techniques and Traditional Interpretable Algorithms -- 4. Model Interpretability: Advances in Interpretable Machine Learning -- 5. Post-hoc Interpretability and Explanations -- 6. Explainable Deep Learning -- 7. Explainability in Time Series Forecasting, Natural Language Processing, and Computer Vision -- 8. XAI: Challenges and Future.
This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great resource for practitioners and researchers in both industry and academia, and the discussed case studies and associated material can serve as inspiration for a variety of projects and hands-on assignments in a classroom setting. I will certainly keep this book as a personal resource for the courses I teach, and strongly recommend it to my students. --Dr. Carlotta Domeniconi, Associate Professor, Computer Science Department, GMU This book offers a curriculum for introducing interpretability to machine learning at every stage. The authors provide compelling examples that a core teaching practice like leading interpretive discussions can be taught and learned by teachers and sustained effort. And what better way to strengthen the quality of AI and Machine learning outcomes. I hope that this book will become a primer for teachers, data Science educators, and ML developers, and together we practice the art of interpretive machine learning. --Anusha Dandapani, Chief Data and Analytics Officer, UNICC and Adjunct Faculty, NYU This is a wonderful book! I'm pleased that the next generation of scientists will finally be able to learn this important topic. This is the first book I've seen that has up-to-date and well-rounded coverage. Thank you to the authors! --Dr. Cynthia Rudin, Professor of Computer Science, Electrical and Computer Engineering, Statistical Science, and Biostatistics & Bioinformatics Literature on Explainable AI has up until now been relatively scarce and featured mainly mainstream algorithms like SHAP and LIME. This book has closed this gap by providing an extremely broad review of various algorithms proposed in the scientific circles over the previous 5-10 years. This book is a great guide to anyone who is new to the field of XAI or is already familiar with the field and is willing to expand their knowledge. A comprehensive review of the state-of-the-art Explainable AI methods starting from visualization, interpretable methods, local and global explanations, time series methods, and finishing with deep learning provides an unparalleled source of information currently unavailable anywhere else. Additionally, notebooks with vivid examples are a great supplement that makes the book even more attractive for practitioners of any level. Overall, the authors provide readers with an enormous breadth of coverage without losing sight of practical aspects, which makes this book truly unique and a great addition to the library of any data scientist. Dr. Andrey Sharapov, Product Data Scientist, Explainable AI Expert and Speaker, Founder of Explainable AI-XAI Group.
ISBN: 9783030833565
Standard No.: 10.1007/978-3-030-83356-5doiSubjects--Topical Terms:
516317
Artificial intelligence.
LC Class. No.: Q335 / .K36 2021
Dewey Class. No.: 006.3
Explainable artificial intelligence: an introduction to interpretable machine learning
LDR
:04277nmm a2200325 a 4500
001
2261973
003
DE-He213
005
20211215083152.0
006
m d
007
cr nn 008maaau
008
220616s2021 sz s 0 eng d
020
$a
9783030833565
$q
(electronic bk.)
020
$a
9783030833558
$q
(paper)
024
7
$a
10.1007/978-3-030-83356-5
$2
doi
035
$a
978-3-030-83356-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q335
$b
.K36 2021
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
090
$a
Q335
$b
.K15 2021
100
1
$a
Kamath, Uday.
$3
3411811
245
1 0
$a
Explainable artificial intelligence: an introduction to interpretable machine learning
$h
[electronic resource] /
$c
by Uday Kamath, John Liu.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xxiii, 310 p. :
$b
ill. (chiefly col.), digital ;
$c
24 cm.
505
0
$a
1. Introduction to Interpretability and Explainability -- 2. Pre-Model Interpretability and Explainability -- 3. Model Visualization Techniques and Traditional Interpretable Algorithms -- 4. Model Interpretability: Advances in Interpretable Machine Learning -- 5. Post-hoc Interpretability and Explanations -- 6. Explainable Deep Learning -- 7. Explainability in Time Series Forecasting, Natural Language Processing, and Computer Vision -- 8. XAI: Challenges and Future.
520
$a
This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great resource for practitioners and researchers in both industry and academia, and the discussed case studies and associated material can serve as inspiration for a variety of projects and hands-on assignments in a classroom setting. I will certainly keep this book as a personal resource for the courses I teach, and strongly recommend it to my students. --Dr. Carlotta Domeniconi, Associate Professor, Computer Science Department, GMU This book offers a curriculum for introducing interpretability to machine learning at every stage. The authors provide compelling examples that a core teaching practice like leading interpretive discussions can be taught and learned by teachers and sustained effort. And what better way to strengthen the quality of AI and Machine learning outcomes. I hope that this book will become a primer for teachers, data Science educators, and ML developers, and together we practice the art of interpretive machine learning. --Anusha Dandapani, Chief Data and Analytics Officer, UNICC and Adjunct Faculty, NYU This is a wonderful book! I'm pleased that the next generation of scientists will finally be able to learn this important topic. This is the first book I've seen that has up-to-date and well-rounded coverage. Thank you to the authors! --Dr. Cynthia Rudin, Professor of Computer Science, Electrical and Computer Engineering, Statistical Science, and Biostatistics & Bioinformatics Literature on Explainable AI has up until now been relatively scarce and featured mainly mainstream algorithms like SHAP and LIME. This book has closed this gap by providing an extremely broad review of various algorithms proposed in the scientific circles over the previous 5-10 years. This book is a great guide to anyone who is new to the field of XAI or is already familiar with the field and is willing to expand their knowledge. A comprehensive review of the state-of-the-art Explainable AI methods starting from visualization, interpretable methods, local and global explanations, time series methods, and finishing with deep learning provides an unparalleled source of information currently unavailable anywhere else. Additionally, notebooks with vivid examples are a great supplement that makes the book even more attractive for practitioners of any level. Overall, the authors provide readers with an enormous breadth of coverage without losing sight of practical aspects, which makes this book truly unique and a great addition to the library of any data scientist. Dr. Andrey Sharapov, Product Data Scientist, Explainable AI Expert and Speaker, Founder of Explainable AI-XAI Group.
650
0
$a
Artificial intelligence.
$3
516317
650
1 4
$a
Artificial Intelligence.
$3
769149
650
2 4
$a
Machine Learning.
$3
3382522
700
1
$a
Liu, John.
$3
750252
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-030-83356-5
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9414686
電子資源
11.線上閱覽_V
電子書
EB Q335 .K36 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入