語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Connectivity and edge computing in I...
~
Gao, Jie.
FindBook
Google Book
Amazon
博客來
Connectivity and edge computing in IoT = customized designs and AI-based solutions /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Connectivity and edge computing in IoT/ by Jie Gao, Mushu Li, Weihua Zhuang.
其他題名:
customized designs and AI-based solutions /
作者:
Gao, Jie.
其他作者:
Li, Mushu.
出版者:
Cham :Springer International Publishing : : 2021.,
面頁冊數:
xiv, 168 p. :ill. (some col.), digital ;24 cm.
內容註:
Introduction -- 1.1 The Era of Internet of Things -- 1.2 Connectivity in IoT -- 1.3 Edge Computing in IoT -- 1.4 AI in IoT -- 1.5 Scope and Organization of This Book -- References -- 2 Industrial Internet of Things: Smart Factory -- 2.1 Industrial IoT Networks -- 2.2 Connectivity Requirements of Smart Factory -- 2.2.1 Application-Specific Requirements -- 2.2.2 Related Standards -- 2.2.3 Potential Non-Link-Layer Solutions -- 2.2.4 Link-Layer Solutions: Recent Research Efforts -- 2.3 Protocol Design for Smart Factory -- 2.3.1 Networking Scenario -- 2.3.2 Mini-Slot based Carrier Sensing (MsCS) -- 2.3.3 Synchronization Sensing (SyncCS) -- 2.3.4 Di_erentiated Assignment Cycles -- 2.3.5 Superimposed Mini-slot Assignment (SMsA) -- 2.3.6 Downlink Control -- 2.4 Performance Analysis -- 2.4.1 Delay Performance with No Buaer -- 2.4.2 Delay Performance with Buaer -- 2.4.3 Slot Idle Probability -- 2.4.4 Impact of SyncCS -- 2.4.5 Impact of SMsA -- 2.5 Scheduling and AI-Assisted Protocol Parameter Selection -- 2.5.1 Background -- 2.5.2 The Considered Scheduling Problem -- ix -- x Contents -- 2.5.3 Device Assignment -- 2.5.4 AI-Assisted Protocol Parameter Selection -- 2.6 Numerical Results -- 2.6.1 Mini-Slot Delay with MsCS, SyncCS, and SMsA -- 2.6.2 Performance of the Device Assignment Algorithms -- 2.6.3 DNN-Assisted Scheduling -- 2.7 Summary -- References -- 3 UAV-Assisted Edge Computing: Rural IoT Applications -- 3.1 Background on UAV-Assisted Edge Computing -- 3.2 Connectivity Requirements of UAV-assisted MEC for Rural -- IoT -- 3.2.1 Network Constraints -- 3.2.2 State-of-the-Art Solutions -- 3.3 Multi-Resource Allocation for UAV-Assisted Edge Computing -- 3.3.1 Network Model -- 3.3.2 Communication Model -- 3.3.3 Computing Model -- 3.3.4 Energy Consumption Model -- 3.3.5 Problem Formulation -- 3.3.6 Optimization Algorithm for UAV-Assisted Edge -- Computing -- 3.3.7 Proactive Trajectory Design based on Spatial -- Distribution Estimation -- 3.4 Numerical Results -- 3.5 Summary -- References -- 4 Collaborative Computing for Internet of Vehicles -- 4.1 Background on Internet of Vehicles -- 4.2 Connectivity Challenges for MEC -- 4.2.1 Server Selection for Computing Offoading -- 4.2.2 Service Migration -- 4.2.3 Cooperative Computing -- 4.3 Computing Task Partition and Scheduling for Edge Computing -- 4.3.1 Collaborative Edge Computing Framework -- 4.3.2 Service Delay -- 4.3.3 Service Failure Penalty -- 4.3.4 Problem Formulation -- 4.3.5 Task Partition and Scheduling -- 4.4 AI-Assisted Collaborative Computing Approach -- 4.5 Performance Evaluation -- 4.5.1 Task Partition and Scheduling Algorithm -- 4.5.2 AI-based Collaborative Computing Approach -- Contents xi -- 4.6 Summary -- References -- 5 Edge-assisted Mobile VR -- 5.1 Background on Mobile Virtual Reality -- 5.2 Caching and Computing Requirements of Mobile VR -- 5.2.1 Mobile VR Video Formats -- 5.2.2 Edge Caching for Mobile VR -- 5.2.3 Edge Computing for Mobile VR -- 5.3 Mobile VR Video Caching and Delivery Model -- 5.3.1 Network Model -- 5.3.2 Content Distribution Model -- 5.3.3 Content Popularity Model -- 5.3.4 Research Objective -- 5.4 Content Caching for Mobile VR -- 5.4.1 Adaptive Field-of-View Video Chunks -- 5.4.2 Content Placement on an Edge Cache -- 5.4.3 Placement Scheme for Video Chunks in a VS -- 5.4.4 Placement Scheme for Video Chunks of Multiple VSs -- 5.4.5 Numerical Results -- 5.5 AI-assisted Mobile VR Video Delivery -- 5.5.1 Content Distribution -- 5.5.2 Intelligent Content Distribution Framework -- 5.5.3 WI-based Delivery Scheduling -- 5.5.4 Reinforcement Learning Assisted Content Distribution -- 5.5.5 Neural Network Structure -- 5.5.6 Numerical Results -- 5.6 Summary -- References -- 6 Conclusions -- 6.1 Summary of the Research -- 6.2 Discussion of Future Directions -- Index.
Contained By:
Springer Nature eBook
標題:
Internet of things. -
電子資源:
https://doi.org/10.1007/978-3-030-88743-8
ISBN:
9783030887438
Connectivity and edge computing in IoT = customized designs and AI-based solutions /
Gao, Jie.
Connectivity and edge computing in IoT
customized designs and AI-based solutions /[electronic resource] :by Jie Gao, Mushu Li, Weihua Zhuang. - Cham :Springer International Publishing :2021. - xiv, 168 p. :ill. (some col.), digital ;24 cm. - Wireless networks,2366-1445. - Wireless networks..
Introduction -- 1.1 The Era of Internet of Things -- 1.2 Connectivity in IoT -- 1.3 Edge Computing in IoT -- 1.4 AI in IoT -- 1.5 Scope and Organization of This Book -- References -- 2 Industrial Internet of Things: Smart Factory -- 2.1 Industrial IoT Networks -- 2.2 Connectivity Requirements of Smart Factory -- 2.2.1 Application-Specific Requirements -- 2.2.2 Related Standards -- 2.2.3 Potential Non-Link-Layer Solutions -- 2.2.4 Link-Layer Solutions: Recent Research Efforts -- 2.3 Protocol Design for Smart Factory -- 2.3.1 Networking Scenario -- 2.3.2 Mini-Slot based Carrier Sensing (MsCS) -- 2.3.3 Synchronization Sensing (SyncCS) -- 2.3.4 Di_erentiated Assignment Cycles -- 2.3.5 Superimposed Mini-slot Assignment (SMsA) -- 2.3.6 Downlink Control -- 2.4 Performance Analysis -- 2.4.1 Delay Performance with No Buaer -- 2.4.2 Delay Performance with Buaer -- 2.4.3 Slot Idle Probability -- 2.4.4 Impact of SyncCS -- 2.4.5 Impact of SMsA -- 2.5 Scheduling and AI-Assisted Protocol Parameter Selection -- 2.5.1 Background -- 2.5.2 The Considered Scheduling Problem -- ix -- x Contents -- 2.5.3 Device Assignment -- 2.5.4 AI-Assisted Protocol Parameter Selection -- 2.6 Numerical Results -- 2.6.1 Mini-Slot Delay with MsCS, SyncCS, and SMsA -- 2.6.2 Performance of the Device Assignment Algorithms -- 2.6.3 DNN-Assisted Scheduling -- 2.7 Summary -- References -- 3 UAV-Assisted Edge Computing: Rural IoT Applications -- 3.1 Background on UAV-Assisted Edge Computing -- 3.2 Connectivity Requirements of UAV-assisted MEC for Rural -- IoT -- 3.2.1 Network Constraints -- 3.2.2 State-of-the-Art Solutions -- 3.3 Multi-Resource Allocation for UAV-Assisted Edge Computing -- 3.3.1 Network Model -- 3.3.2 Communication Model -- 3.3.3 Computing Model -- 3.3.4 Energy Consumption Model -- 3.3.5 Problem Formulation -- 3.3.6 Optimization Algorithm for UAV-Assisted Edge -- Computing -- 3.3.7 Proactive Trajectory Design based on Spatial -- Distribution Estimation -- 3.4 Numerical Results -- 3.5 Summary -- References -- 4 Collaborative Computing for Internet of Vehicles -- 4.1 Background on Internet of Vehicles -- 4.2 Connectivity Challenges for MEC -- 4.2.1 Server Selection for Computing Offoading -- 4.2.2 Service Migration -- 4.2.3 Cooperative Computing -- 4.3 Computing Task Partition and Scheduling for Edge Computing -- 4.3.1 Collaborative Edge Computing Framework -- 4.3.2 Service Delay -- 4.3.3 Service Failure Penalty -- 4.3.4 Problem Formulation -- 4.3.5 Task Partition and Scheduling -- 4.4 AI-Assisted Collaborative Computing Approach -- 4.5 Performance Evaluation -- 4.5.1 Task Partition and Scheduling Algorithm -- 4.5.2 AI-based Collaborative Computing Approach -- Contents xi -- 4.6 Summary -- References -- 5 Edge-assisted Mobile VR -- 5.1 Background on Mobile Virtual Reality -- 5.2 Caching and Computing Requirements of Mobile VR -- 5.2.1 Mobile VR Video Formats -- 5.2.2 Edge Caching for Mobile VR -- 5.2.3 Edge Computing for Mobile VR -- 5.3 Mobile VR Video Caching and Delivery Model -- 5.3.1 Network Model -- 5.3.2 Content Distribution Model -- 5.3.3 Content Popularity Model -- 5.3.4 Research Objective -- 5.4 Content Caching for Mobile VR -- 5.4.1 Adaptive Field-of-View Video Chunks -- 5.4.2 Content Placement on an Edge Cache -- 5.4.3 Placement Scheme for Video Chunks in a VS -- 5.4.4 Placement Scheme for Video Chunks of Multiple VSs -- 5.4.5 Numerical Results -- 5.5 AI-assisted Mobile VR Video Delivery -- 5.5.1 Content Distribution -- 5.5.2 Intelligent Content Distribution Framework -- 5.5.3 WI-based Delivery Scheduling -- 5.5.4 Reinforcement Learning Assisted Content Distribution -- 5.5.5 Neural Network Structure -- 5.5.6 Numerical Results -- 5.6 Summary -- References -- 6 Conclusions -- 6.1 Summary of the Research -- 6.2 Discussion of Future Directions -- Index.
This book covers connectivity and edge computing solutions for representative Internet of Things (IoT) use cases, including industrial IoT, rural IoT, Internet of Vehicles (IoV), and mobile virtual reality (VR) Based on their unique characteristics and requirements, customized solutions are designed with targets such as supporting massive connections or seamless mobility and achieving low latency or high energy efficiency. Meanwhile, the book highlights the role of artificial intelligence (AI) in future IoT networks and showcases AI-based connectivity and edge computing solutions. The solutions presented in this book serve the overall purpose of facilitating an increasingly connected and intelligent world. The potential benefits of the solutions include increased productivity in factories, improved connectivity in rural areas, enhanced safety for vehicles, and enriched entertainment experiences for mobile users. Featuring state-of-the-art research in the IoT field, this book can help answer the question of how to connect billions of diverse devices and enable seamless data collection and processing in future IoT. The content also provides insights regarding the significance of customizing use case-specific solutions as well as approaches of using various AI methods to empower IoT. This book targets researchers and graduate students working in the areas of electrical engineering, computing engineering, and computer science as a secondary textbook or reference. Professionals in industry who work in the field of IoT will also find this book useful.
ISBN: 9783030887438
Standard No.: 10.1007/978-3-030-88743-8doiSubjects--Topical Terms:
2057703
Internet of things.
LC Class. No.: TK5105.8857 / .G36 2021
Dewey Class. No.: 004.678
Connectivity and edge computing in IoT = customized designs and AI-based solutions /
LDR
:06459nmm 22003375a 4500
001
2258721
003
DE-He213
005
20211125221534.0
006
m d
007
cr nn 008maaau
008
220422s2021 sz s 0 eng d
020
$a
9783030887438
$q
(electronic bk.)
020
$a
9783030887421
$q
(paper)
024
7
$a
10.1007/978-3-030-88743-8
$2
doi
035
$a
978-3-030-88743-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TK5105.8857
$b
.G36 2021
072
7
$a
UKN
$2
bicssc
072
7
$a
COM075000
$2
bisacsh
072
7
$a
UKN
$2
thema
082
0 4
$a
004.678
$2
23
090
$a
TK5105.8857
$b
.G211 2021
100
1
$a
Gao, Jie.
$3
1264840
245
1 0
$a
Connectivity and edge computing in IoT
$h
[electronic resource] :
$b
customized designs and AI-based solutions /
$c
by Jie Gao, Mushu Li, Weihua Zhuang.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xiv, 168 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Wireless networks,
$x
2366-1445
505
0
$a
Introduction -- 1.1 The Era of Internet of Things -- 1.2 Connectivity in IoT -- 1.3 Edge Computing in IoT -- 1.4 AI in IoT -- 1.5 Scope and Organization of This Book -- References -- 2 Industrial Internet of Things: Smart Factory -- 2.1 Industrial IoT Networks -- 2.2 Connectivity Requirements of Smart Factory -- 2.2.1 Application-Specific Requirements -- 2.2.2 Related Standards -- 2.2.3 Potential Non-Link-Layer Solutions -- 2.2.4 Link-Layer Solutions: Recent Research Efforts -- 2.3 Protocol Design for Smart Factory -- 2.3.1 Networking Scenario -- 2.3.2 Mini-Slot based Carrier Sensing (MsCS) -- 2.3.3 Synchronization Sensing (SyncCS) -- 2.3.4 Di_erentiated Assignment Cycles -- 2.3.5 Superimposed Mini-slot Assignment (SMsA) -- 2.3.6 Downlink Control -- 2.4 Performance Analysis -- 2.4.1 Delay Performance with No Buaer -- 2.4.2 Delay Performance with Buaer -- 2.4.3 Slot Idle Probability -- 2.4.4 Impact of SyncCS -- 2.4.5 Impact of SMsA -- 2.5 Scheduling and AI-Assisted Protocol Parameter Selection -- 2.5.1 Background -- 2.5.2 The Considered Scheduling Problem -- ix -- x Contents -- 2.5.3 Device Assignment -- 2.5.4 AI-Assisted Protocol Parameter Selection -- 2.6 Numerical Results -- 2.6.1 Mini-Slot Delay with MsCS, SyncCS, and SMsA -- 2.6.2 Performance of the Device Assignment Algorithms -- 2.6.3 DNN-Assisted Scheduling -- 2.7 Summary -- References -- 3 UAV-Assisted Edge Computing: Rural IoT Applications -- 3.1 Background on UAV-Assisted Edge Computing -- 3.2 Connectivity Requirements of UAV-assisted MEC for Rural -- IoT -- 3.2.1 Network Constraints -- 3.2.2 State-of-the-Art Solutions -- 3.3 Multi-Resource Allocation for UAV-Assisted Edge Computing -- 3.3.1 Network Model -- 3.3.2 Communication Model -- 3.3.3 Computing Model -- 3.3.4 Energy Consumption Model -- 3.3.5 Problem Formulation -- 3.3.6 Optimization Algorithm for UAV-Assisted Edge -- Computing -- 3.3.7 Proactive Trajectory Design based on Spatial -- Distribution Estimation -- 3.4 Numerical Results -- 3.5 Summary -- References -- 4 Collaborative Computing for Internet of Vehicles -- 4.1 Background on Internet of Vehicles -- 4.2 Connectivity Challenges for MEC -- 4.2.1 Server Selection for Computing Offoading -- 4.2.2 Service Migration -- 4.2.3 Cooperative Computing -- 4.3 Computing Task Partition and Scheduling for Edge Computing -- 4.3.1 Collaborative Edge Computing Framework -- 4.3.2 Service Delay -- 4.3.3 Service Failure Penalty -- 4.3.4 Problem Formulation -- 4.3.5 Task Partition and Scheduling -- 4.4 AI-Assisted Collaborative Computing Approach -- 4.5 Performance Evaluation -- 4.5.1 Task Partition and Scheduling Algorithm -- 4.5.2 AI-based Collaborative Computing Approach -- Contents xi -- 4.6 Summary -- References -- 5 Edge-assisted Mobile VR -- 5.1 Background on Mobile Virtual Reality -- 5.2 Caching and Computing Requirements of Mobile VR -- 5.2.1 Mobile VR Video Formats -- 5.2.2 Edge Caching for Mobile VR -- 5.2.3 Edge Computing for Mobile VR -- 5.3 Mobile VR Video Caching and Delivery Model -- 5.3.1 Network Model -- 5.3.2 Content Distribution Model -- 5.3.3 Content Popularity Model -- 5.3.4 Research Objective -- 5.4 Content Caching for Mobile VR -- 5.4.1 Adaptive Field-of-View Video Chunks -- 5.4.2 Content Placement on an Edge Cache -- 5.4.3 Placement Scheme for Video Chunks in a VS -- 5.4.4 Placement Scheme for Video Chunks of Multiple VSs -- 5.4.5 Numerical Results -- 5.5 AI-assisted Mobile VR Video Delivery -- 5.5.1 Content Distribution -- 5.5.2 Intelligent Content Distribution Framework -- 5.5.3 WI-based Delivery Scheduling -- 5.5.4 Reinforcement Learning Assisted Content Distribution -- 5.5.5 Neural Network Structure -- 5.5.6 Numerical Results -- 5.6 Summary -- References -- 6 Conclusions -- 6.1 Summary of the Research -- 6.2 Discussion of Future Directions -- Index.
520
$a
This book covers connectivity and edge computing solutions for representative Internet of Things (IoT) use cases, including industrial IoT, rural IoT, Internet of Vehicles (IoV), and mobile virtual reality (VR) Based on their unique characteristics and requirements, customized solutions are designed with targets such as supporting massive connections or seamless mobility and achieving low latency or high energy efficiency. Meanwhile, the book highlights the role of artificial intelligence (AI) in future IoT networks and showcases AI-based connectivity and edge computing solutions. The solutions presented in this book serve the overall purpose of facilitating an increasingly connected and intelligent world. The potential benefits of the solutions include increased productivity in factories, improved connectivity in rural areas, enhanced safety for vehicles, and enriched entertainment experiences for mobile users. Featuring state-of-the-art research in the IoT field, this book can help answer the question of how to connect billions of diverse devices and enable seamless data collection and processing in future IoT. The content also provides insights regarding the significance of customizing use case-specific solutions as well as approaches of using various AI methods to empower IoT. This book targets researchers and graduate students working in the areas of electrical engineering, computing engineering, and computer science as a secondary textbook or reference. Professionals in industry who work in the field of IoT will also find this book useful.
650
0
$a
Internet of things.
$3
2057703
650
0
$a
Edge computing.
$3
3489844
650
1 4
$a
Computer Communication Networks.
$3
775497
650
2 4
$a
Wireless and Mobile Communication.
$3
3338159
650
2 4
$a
Artificial Intelligence.
$3
769149
650
2 4
$a
Computer Applications.
$3
891249
700
1
$a
Li, Mushu.
$3
3531434
700
1
$a
Zhuang, Weihua.
$3
1258327
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Wireless networks.
$3
2162432
856
4 0
$u
https://doi.org/10.1007/978-3-030-88743-8
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9414328
電子資源
11.線上閱覽_V
電子書
EB TK5105.8857 .G36 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入