語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Large-scale graph analysis = system,...
~
Shao, Yingxia.
FindBook
Google Book
Amazon
博客來
Large-scale graph analysis = system, algorithm and optimization /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Large-scale graph analysis/ by Yingxia Shao, Bin Cui, Lei Chen.
其他題名:
system, algorithm and optimization /
作者:
Shao, Yingxia.
其他作者:
Cui, Bin.
出版者:
Singapore :Springer Singapore : : 2020.,
面頁冊數:
xiii, 146 p. :ill., digital ;24 cm.
內容註:
1. Introduction -- 2. Graph Computing Systems for Large-Scale Graph Analysis -- 3. Partition-Aware Graph Computing System -- 4. Efficient Parallel Subgraph Enumeration -- 5. Efficient Parallel Graph Extraction -- 6. Efficient Parallel Cohesive Subgraph Detection -- 7. Conclusions.
Contained By:
Springer Nature eBook
標題:
Graph algorithms. -
電子資源:
https://doi.org/10.1007/978-981-15-3928-2
ISBN:
9789811539282
Large-scale graph analysis = system, algorithm and optimization /
Shao, Yingxia.
Large-scale graph analysis
system, algorithm and optimization /[electronic resource] :by Yingxia Shao, Bin Cui, Lei Chen. - Singapore :Springer Singapore :2020. - xiii, 146 p. :ill., digital ;24 cm. - Big data management,2522-0179. - Big data management..
1. Introduction -- 2. Graph Computing Systems for Large-Scale Graph Analysis -- 3. Partition-Aware Graph Computing System -- 4. Efficient Parallel Subgraph Enumeration -- 5. Efficient Parallel Graph Extraction -- 6. Efficient Parallel Cohesive Subgraph Detection -- 7. Conclusions.
This book introduces readers to a workload-aware methodology for large-scale graph algorithm optimization in graph-computing systems, and proposes several optimization techniques that can enable these systems to handle advanced graph algorithms efficiently. More concretely, it proposes a workload-aware cost model to guide the development of high-performance algorithms. On the basis of the cost model, the book subsequently presents a system-level optimization resulting in a partition-aware graph-computing engine, PAGE. In addition, it presents three efficient and scalable advanced graph algorithms - the subgraph enumeration, cohesive subgraph detection, and graph extraction algorithms. This book offers a valuable reference guide for junior researchers, covering the latest advances in large-scale graph analysis; and for senior researchers, sharing state-of-the-art solutions based on advanced graph algorithms. In addition, all readers will find a workload-aware methodology for designing efficient large-scale graph algorithms.
ISBN: 9789811539282
Standard No.: 10.1007/978-981-15-3928-2doiSubjects--Topical Terms:
596326
Graph algorithms.
LC Class. No.: QA166.245 / .S43 2020
Dewey Class. No.: 518.1
Large-scale graph analysis = system, algorithm and optimization /
LDR
:02374nmm a2200337 a 4500
001
2257881
003
DE-He213
005
20200703013742.0
006
m d
007
cr nn 008maaau
008
220420s2020 si s 0 eng d
020
$a
9789811539282
$q
(electronic bk.)
020
$a
9789811539275
$q
(paper)
024
7
$a
10.1007/978-981-15-3928-2
$2
doi
035
$a
978-981-15-3928-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA166.245
$b
.S43 2020
072
7
$a
UN
$2
bicssc
072
7
$a
COM021000
$2
bisacsh
072
7
$a
UN
$2
thema
082
0 4
$a
518.1
$2
23
090
$a
QA166.245
$b
.S528 2020
100
1
$a
Shao, Yingxia.
$3
3529451
245
1 0
$a
Large-scale graph analysis
$h
[electronic resource] :
$b
system, algorithm and optimization /
$c
by Yingxia Shao, Bin Cui, Lei Chen.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2020.
300
$a
xiii, 146 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Big data management,
$x
2522-0179
505
0
$a
1. Introduction -- 2. Graph Computing Systems for Large-Scale Graph Analysis -- 3. Partition-Aware Graph Computing System -- 4. Efficient Parallel Subgraph Enumeration -- 5. Efficient Parallel Graph Extraction -- 6. Efficient Parallel Cohesive Subgraph Detection -- 7. Conclusions.
520
$a
This book introduces readers to a workload-aware methodology for large-scale graph algorithm optimization in graph-computing systems, and proposes several optimization techniques that can enable these systems to handle advanced graph algorithms efficiently. More concretely, it proposes a workload-aware cost model to guide the development of high-performance algorithms. On the basis of the cost model, the book subsequently presents a system-level optimization resulting in a partition-aware graph-computing engine, PAGE. In addition, it presents three efficient and scalable advanced graph algorithms - the subgraph enumeration, cohesive subgraph detection, and graph extraction algorithms. This book offers a valuable reference guide for junior researchers, covering the latest advances in large-scale graph analysis; and for senior researchers, sharing state-of-the-art solutions based on advanced graph algorithms. In addition, all readers will find a workload-aware methodology for designing efficient large-scale graph algorithms.
650
0
$a
Graph algorithms.
$3
596326
650
1 4
$a
Big Data.
$3
3134868
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
898250
650
2 4
$a
Applications of Graph Theory and Complex Networks.
$3
3134760
650
2 4
$a
Management of Computing and Information Systems.
$3
892490
700
1
$a
Cui, Bin.
$3
2194857
700
1
$a
Chen, Lei.
$3
1085552
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Big data management.
$3
3500827
856
4 0
$u
https://doi.org/10.1007/978-981-15-3928-2
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9413509
電子資源
11.線上閱覽_V
電子書
EB QA166.245 .S43 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入