語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Effective statistical learning metho...
~
Denuit, Michel.
FindBook
Google Book
Amazon
博客來
Effective statistical learning methods for actuaries.. II,. Tree-based methods and extensions
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Effective statistical learning methods for actuaries./ by Michel Denuit, Donatien Hainaut, Julien Trufin.
其他題名:
Tree-based methods and extensions
作者:
Denuit, Michel.
其他作者:
Hainaut, Donatien.
出版者:
Cham :Springer International Publishing : : 2020.,
面頁冊數:
x, 228 p. :ill., digital ;24 cm.
內容註:
Chapter 1: Introductio -- Chapter 2 : Performance Evaluation -- Chapter 3 Regression Trees -- Chapter 4 Bagging Trees and Random Forests -- Chapter 5 Boosting Trees -- Chapter 6 Other Measures for Model Comparison.
Contained By:
Springer Nature eBook
標題:
Regression analysis. -
電子資源:
https://doi.org/10.1007/978-3-030-57556-4
ISBN:
9783030575564
Effective statistical learning methods for actuaries.. II,. Tree-based methods and extensions
Denuit, Michel.
Effective statistical learning methods for actuaries.
II,Tree-based methods and extensions[electronic resource] /Tree-based methods and extensionsby Michel Denuit, Donatien Hainaut, Julien Trufin. - Cham :Springer International Publishing :2020. - x, 228 p. :ill., digital ;24 cm. - Springer actuarial lecture notes,2523-3289. - Springer actuarial lecture notes..
Chapter 1: Introductio -- Chapter 2 : Performance Evaluation -- Chapter 3 Regression Trees -- Chapter 4 Bagging Trees and Random Forests -- Chapter 5 Boosting Trees -- Chapter 6 Other Measures for Model Comparison.
This book summarizes the state of the art in tree-based methods for insurance: regression trees, random forests and boosting methods. It also exhibits the tools which make it possible to assess the predictive performance of tree-based models. Actuaries need these advanced analytical tools to turn the massive data sets now at their disposal into opportunities. The exposition alternates between methodological aspects and numerical illustrations or case studies. All numerical illustrations are performed with the R statistical software. The technical prerequisites are kept at a reasonable level in order to reach a broad readership. In particular, masters students in actuarial sciences and actuaries wishing to update their skills in machine learning will find the book useful. This is the second of three volumes entitled Effective Statistical Learning Methods for Actuaries. Written by actuaries for actuaries, this series offers a comprehensive overview of insurance data analytics with applications to P&C, life and health insurance.
ISBN: 9783030575564
Standard No.: 10.1007/978-3-030-57556-4doiSubjects--Topical Terms:
529831
Regression analysis.
LC Class. No.: QA278.2
Dewey Class. No.: 519.536
Effective statistical learning methods for actuaries.. II,. Tree-based methods and extensions
LDR
:02410nmm a2200349 a 4500
001
2257155
003
DE-He213
005
20210311160147.0
006
m d
007
cr nn 008maaau
008
220420s2020 sz s 0 eng d
020
$a
9783030575564
$q
(electronic bk.)
020
$a
9783030575557
$q
(paper)
024
7
$a
10.1007/978-3-030-57556-4
$2
doi
035
$a
978-3-030-57556-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA278.2
072
7
$a
KFFN
$2
bicssc
072
7
$a
BUS033000
$2
bisacsh
072
7
$a
KFFN
$2
thema
082
0 4
$a
519.536
$2
23
090
$a
QA278.2
$b
.D415 2020
100
1
$a
Denuit, Michel.
$3
3453990
245
1 0
$a
Effective statistical learning methods for actuaries.
$n
II,
$p
Tree-based methods and extensions
$h
[electronic resource] /
$c
by Michel Denuit, Donatien Hainaut, Julien Trufin.
246
3 0
$a
Tree-based methods and extensions
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
x, 228 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer actuarial lecture notes,
$x
2523-3289
505
0
$a
Chapter 1: Introductio -- Chapter 2 : Performance Evaluation -- Chapter 3 Regression Trees -- Chapter 4 Bagging Trees and Random Forests -- Chapter 5 Boosting Trees -- Chapter 6 Other Measures for Model Comparison.
520
$a
This book summarizes the state of the art in tree-based methods for insurance: regression trees, random forests and boosting methods. It also exhibits the tools which make it possible to assess the predictive performance of tree-based models. Actuaries need these advanced analytical tools to turn the massive data sets now at their disposal into opportunities. The exposition alternates between methodological aspects and numerical illustrations or case studies. All numerical illustrations are performed with the R statistical software. The technical prerequisites are kept at a reasonable level in order to reach a broad readership. In particular, masters students in actuarial sciences and actuaries wishing to update their skills in machine learning will find the book useful. This is the second of three volumes entitled Effective Statistical Learning Methods for Actuaries. Written by actuaries for actuaries, this series offers a comprehensive overview of insurance data analytics with applications to P&C, life and health insurance.
650
0
$a
Regression analysis.
$3
529831
650
0
$a
Actuarial science.
$3
1536028
650
1 4
$a
Actuarial Sciences.
$3
1619946
650
2 4
$a
Mathematical Models of Cognitive Processes and Neural Networks.
$3
1619875
650
2 4
$a
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.
$3
1005896
650
2 4
$a
Statistics for Business, Management, Economics, Finance, Insurance.
$3
3382132
700
1
$a
Hainaut, Donatien.
$3
3453991
700
1
$a
Trufin, Julien.
$3
3453992
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Springer actuarial lecture notes.
$3
3453993
856
4 0
$u
https://doi.org/10.1007/978-3-030-57556-4
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9412790
電子資源
11.線上閱覽_V
電子書
EB QA278.2
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入