語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Soft error reliability using virtual...
~
Rocha da Rosa, Felipe.
FindBook
Google Book
Amazon
博客來
Soft error reliability using virtual platforms = early evaluation of multicore systems /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Soft error reliability using virtual platforms/ by Felipe Rocha da Rosa, Luciano Ost, Ricardo Reis.
其他題名:
early evaluation of multicore systems /
作者:
Rocha da Rosa, Felipe.
其他作者:
Ost, Luciano.
出版者:
Cham :Springer International Publishing : : 2020.,
面頁冊數:
xi, 136 p. :ill. (some col.), digital ;24 cm.
內容註:
Chapter 1. Introduction -- Chapter 2. Background on Soft Errors -- Chapter 3. Fault Injection Framework Using Virtual Platforms -- Chapter 4. Performance and Accuracy Assessment of Fault Injection Frameworks Based on VPs -- Chapter 5. Extensive Soft Error Evaluation -- Chapter 6. Machine Learning Applied to Soft Error Assessment in Multicoresystems.
Contained By:
Springer Nature eBook
標題:
Multiprocessors - Evaluation. -
電子資源:
https://doi.org/10.1007/978-3-030-55704-1
ISBN:
9783030557041
Soft error reliability using virtual platforms = early evaluation of multicore systems /
Rocha da Rosa, Felipe.
Soft error reliability using virtual platforms
early evaluation of multicore systems /[electronic resource] :by Felipe Rocha da Rosa, Luciano Ost, Ricardo Reis. - Cham :Springer International Publishing :2020. - xi, 136 p. :ill. (some col.), digital ;24 cm.
Chapter 1. Introduction -- Chapter 2. Background on Soft Errors -- Chapter 3. Fault Injection Framework Using Virtual Platforms -- Chapter 4. Performance and Accuracy Assessment of Fault Injection Frameworks Based on VPs -- Chapter 5. Extensive Soft Error Evaluation -- Chapter 6. Machine Learning Applied to Soft Error Assessment in Multicoresystems.
This book describes the benefits and drawbacks inherent in the use of virtual platforms (VPs) to perform fast and early soft error assessment of multicore systems. The authors show that VPs provide engineers with appropriate means to investigate new and more efficient fault injection and mitigation techniques. Coverage also includes the use of machine learning techniques (e.g., linear regression) to speed-up the soft error evaluation process by pinpointing parameters (e.g., architectural) with the most substantial impact on the software stack dependability. This book provides valuable information and insight through more than 3 million individual scenarios and 2 million simulation-hours. Further, this book explores machine learning techniques usage to navigate large fault injection datasets. Describes the most suitable and efficient virtual platforms to include fault injection capabilities, aiming to support the soft error analysis of state-of-the-art processor models; Includes analysis and port of several benchmarks from embedded and HPC domains, including the Rodinia and NASA NAS Parallel Benchmark (NPB) suites; Introduces four novel, non-intrusive FI techniques enabling software engineers to perform in-depth and relevant soft error evaluation, addressing the gap between the available FI tools and the industry requirements; Explores machine learning techniques that can be used to enable the identification of individual (or combinations of) microarchitectural and software parameters that present the most substantial relation relationship with each detected soft error or failure.
ISBN: 9783030557041
Standard No.: 10.1007/978-3-030-55704-1doiSubjects--Topical Terms:
3527473
Multiprocessors
--Evaluation.
LC Class. No.: QA76.9.E95 / R63 2020
Dewey Class. No.: 005.7
Soft error reliability using virtual platforms = early evaluation of multicore systems /
LDR
:03012nmm a2200325 a 4500
001
2256843
003
DE-He213
005
20201102163504.0
006
m d
007
cr nn 008maaau
008
220420s2020 sz s 0 eng d
020
$a
9783030557041
$q
(electronic bk.)
020
$a
9783030557034
$q
(paper)
024
7
$a
10.1007/978-3-030-55704-1
$2
doi
035
$a
978-3-030-55704-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.E95
$b
R63 2020
072
7
$a
TJFC
$2
bicssc
072
7
$a
TEC008010
$2
bisacsh
072
7
$a
TJFC
$2
thema
082
0 4
$a
005.7
$2
23
090
$a
QA76.9.E95
$b
R672 2020
100
1
$a
Rocha da Rosa, Felipe.
$3
3527471
245
1 0
$a
Soft error reliability using virtual platforms
$h
[electronic resource] :
$b
early evaluation of multicore systems /
$c
by Felipe Rocha da Rosa, Luciano Ost, Ricardo Reis.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xi, 136 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Chapter 1. Introduction -- Chapter 2. Background on Soft Errors -- Chapter 3. Fault Injection Framework Using Virtual Platforms -- Chapter 4. Performance and Accuracy Assessment of Fault Injection Frameworks Based on VPs -- Chapter 5. Extensive Soft Error Evaluation -- Chapter 6. Machine Learning Applied to Soft Error Assessment in Multicoresystems.
520
$a
This book describes the benefits and drawbacks inherent in the use of virtual platforms (VPs) to perform fast and early soft error assessment of multicore systems. The authors show that VPs provide engineers with appropriate means to investigate new and more efficient fault injection and mitigation techniques. Coverage also includes the use of machine learning techniques (e.g., linear regression) to speed-up the soft error evaluation process by pinpointing parameters (e.g., architectural) with the most substantial impact on the software stack dependability. This book provides valuable information and insight through more than 3 million individual scenarios and 2 million simulation-hours. Further, this book explores machine learning techniques usage to navigate large fault injection datasets. Describes the most suitable and efficient virtual platforms to include fault injection capabilities, aiming to support the soft error analysis of state-of-the-art processor models; Includes analysis and port of several benchmarks from embedded and HPC domains, including the Rodinia and NASA NAS Parallel Benchmark (NPB) suites; Introduces four novel, non-intrusive FI techniques enabling software engineers to perform in-depth and relevant soft error evaluation, addressing the gap between the available FI tools and the industry requirements; Explores machine learning techniques that can be used to enable the identification of individual (or combinations of) microarchitectural and software parameters that present the most substantial relation relationship with each detected soft error or failure.
650
0
$a
Multiprocessors
$x
Evaluation.
$3
3527473
650
0
$a
Multiprocessors
$x
Reliability.
$3
3527474
650
0
$a
Soft errors (Computer science)
$3
2182962
650
0
$a
Virtual computer systems.
$3
637540
650
1 4
$a
Circuits and Systems.
$3
896527
650
2 4
$a
Electronics and Microelectronics, Instrumentation.
$3
893838
650
2 4
$a
Processor Architectures.
$3
892680
700
1
$a
Ost, Luciano.
$3
3527472
700
1
$a
Reis, Ricardo.
$3
833058
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-030-55704-1
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9412478
電子資源
11.線上閱覽_V
電子書
EB QA76.9.E95 R63 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入