語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Statistical field theory for neural ...
~
Helias, Moritz.
FindBook
Google Book
Amazon
博客來
Statistical field theory for neural networks
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Statistical field theory for neural networks/ by Moritz Helias, David Dahmen.
作者:
Helias, Moritz.
其他作者:
Dahmen, David.
出版者:
Cham :Springer International Publishing : : 2020.,
面頁冊數:
xvii, 203 p. :ill., digital ;24 cm.
內容註:
Introduction -- Probabilities, moments, cumulants -- Gaussian distribution and Wick's theorem -- Perturbation expansion -- Linked cluster theorem -- Functional preliminaries -- Functional formulation of stochastic differential equations -- Ornstein-Uhlenbeck process: The free Gaussian theory -- Perturbation theory for stochastic differential equations -- Dynamic mean-field theory for random networks -- Vertex generating function -- Application: TAP approximation -- Expansion of cumulants into tree diagrams of vertex functions -- Loopwise expansion of the effective action - Tree level -- Loopwise expansion in the MSRDJ formalism -- Nomenclature.
Contained By:
Springer Nature eBook
標題:
Stochastic differential equations. -
電子資源:
https://doi.org/10.1007/978-3-030-46444-8
ISBN:
9783030464448
Statistical field theory for neural networks
Helias, Moritz.
Statistical field theory for neural networks
[electronic resource] /by Moritz Helias, David Dahmen. - Cham :Springer International Publishing :2020. - xvii, 203 p. :ill., digital ;24 cm. - Lecture notes in physics,v.9700075-8450 ;. - Lecture notes in physics ;v.970..
Introduction -- Probabilities, moments, cumulants -- Gaussian distribution and Wick's theorem -- Perturbation expansion -- Linked cluster theorem -- Functional preliminaries -- Functional formulation of stochastic differential equations -- Ornstein-Uhlenbeck process: The free Gaussian theory -- Perturbation theory for stochastic differential equations -- Dynamic mean-field theory for random networks -- Vertex generating function -- Application: TAP approximation -- Expansion of cumulants into tree diagrams of vertex functions -- Loopwise expansion of the effective action - Tree level -- Loopwise expansion in the MSRDJ formalism -- Nomenclature.
This book presents a self-contained introduction to techniques from field theory applied to stochastic and collective dynamics in neuronal networks. These powerful analytical techniques, which are well established in other fields of physics, are the basis of current developments and offer solutions to pressing open problems in theoretical neuroscience and also machine learning. They enable a systematic and quantitative understanding of the dynamics in recurrent and stochastic neuronal networks. This book is intended for physicists, mathematicians, and computer scientists and it is designed for self-study by researchers who want to enter the field or as the main text for a one semester course at advanced undergraduate or graduate level. The theoretical concepts presented in this book are systematically developed from the very beginning, which only requires basic knowledge of analysis and linear algebra.
ISBN: 9783030464448
Standard No.: 10.1007/978-3-030-46444-8doiSubjects--Topical Terms:
621860
Stochastic differential equations.
LC Class. No.: QA274.23
Dewey Class. No.: 519.22
Statistical field theory for neural networks
LDR
:02602nmm a2200337 a 4500
001
2256150
003
DE-He213
005
20200820043533.0
006
m d
007
cr nn 008maaau
008
220420s2020 sz s 0 eng d
020
$a
9783030464448
$q
(electronic bk.)
020
$a
9783030464431
$q
(paper)
024
7
$a
10.1007/978-3-030-46444-8
$2
doi
035
$a
978-3-030-46444-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA274.23
072
7
$a
PHS
$2
bicssc
072
7
$a
SCI040000
$2
bisacsh
072
7
$a
PHS
$2
thema
082
0 4
$a
519.22
$2
23
090
$a
QA274.23
$b
.H475 2020
100
1
$a
Helias, Moritz.
$3
3526187
245
1 0
$a
Statistical field theory for neural networks
$h
[electronic resource] /
$c
by Moritz Helias, David Dahmen.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xvii, 203 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in physics,
$x
0075-8450 ;
$v
v.970
505
0
$a
Introduction -- Probabilities, moments, cumulants -- Gaussian distribution and Wick's theorem -- Perturbation expansion -- Linked cluster theorem -- Functional preliminaries -- Functional formulation of stochastic differential equations -- Ornstein-Uhlenbeck process: The free Gaussian theory -- Perturbation theory for stochastic differential equations -- Dynamic mean-field theory for random networks -- Vertex generating function -- Application: TAP approximation -- Expansion of cumulants into tree diagrams of vertex functions -- Loopwise expansion of the effective action - Tree level -- Loopwise expansion in the MSRDJ formalism -- Nomenclature.
520
$a
This book presents a self-contained introduction to techniques from field theory applied to stochastic and collective dynamics in neuronal networks. These powerful analytical techniques, which are well established in other fields of physics, are the basis of current developments and offer solutions to pressing open problems in theoretical neuroscience and also machine learning. They enable a systematic and quantitative understanding of the dynamics in recurrent and stochastic neuronal networks. This book is intended for physicists, mathematicians, and computer scientists and it is designed for self-study by researchers who want to enter the field or as the main text for a one semester course at advanced undergraduate or graduate level. The theoretical concepts presented in this book are systematically developed from the very beginning, which only requires basic knowledge of analysis and linear algebra.
650
0
$a
Stochastic differential equations.
$3
621860
650
0
$a
Neural networks (Computer science)
$x
Mathematics.
$3
904846
650
1 4
$a
Statistical Physics and Dynamical Systems.
$3
3135115
650
2 4
$a
Neurosciences.
$3
588700
650
2 4
$a
Machine Learning.
$3
3382522
650
2 4
$a
Mathematical Models of Cognitive Processes and Neural Networks.
$3
1619875
650
2 4
$a
Probability and Statistics in Computer Science.
$3
891072
700
1
$a
Dahmen, David.
$3
3526188
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in physics ;
$v
v.970.
$3
3526189
856
4 0
$u
https://doi.org/10.1007/978-3-030-46444-8
950
$a
Physics and Astronomy (SpringerNature-11651)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9411786
電子資源
11.線上閱覽_V
電子書
EB QA274.23
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入