語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
An introduction to clustering with R
~
Giordani, Paolo.
FindBook
Google Book
Amazon
博客來
An introduction to clustering with R
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
An introduction to clustering with R/ by Paolo Giordani, Maria Brigida Ferraro, Francesca Martella.
作者:
Giordani, Paolo.
其他作者:
Ferraro, Maria Brigida.
出版者:
Singapore :Springer Singapore : : 2020.,
面頁冊數:
xvii, 340 p. :ill., digital ;24 cm.
內容註:
Section: Introduction -- 1.1 Introduction to clustering -- 1.2 R software -- 2. Section: Standard algorithms -- 2.1 Introduction -- 2.2 Distances and dissimilarities -- 2.3 Hierarchical methods -- 2.4 Non-hierarchical methods -- 2.5 Cluster validity -- 3. Section: Fuzzy algorithms -- 3.1 Introduction -- 3.2 Fuzzy K-means -- 3.3 Fuzzy K-medoids -- 3.4 Other fuzzy variants -- 3.5 Cluster validity -- 4. Section: Model-based algorithms -- 4.1 Introduction -- 4.2 Mixture of Gaussian distributions -- 4.3 Mixture of non-Gaussian distributions -- 4.4 Parsimonious mixture models.
Contained By:
Springer Nature eBook
標題:
Cluster analysis. -
電子資源:
https://doi.org/10.1007/978-981-13-0553-5
ISBN:
9789811305535
An introduction to clustering with R
Giordani, Paolo.
An introduction to clustering with R
[electronic resource] /by Paolo Giordani, Maria Brigida Ferraro, Francesca Martella. - Singapore :Springer Singapore :2020. - xvii, 340 p. :ill., digital ;24 cm. - Behaviormetrics: quantitative approaches to human behavior,v.12524-4027 ;. - Behaviormetrics: quantitative approaches to human behavior ;v.1..
Section: Introduction -- 1.1 Introduction to clustering -- 1.2 R software -- 2. Section: Standard algorithms -- 2.1 Introduction -- 2.2 Distances and dissimilarities -- 2.3 Hierarchical methods -- 2.4 Non-hierarchical methods -- 2.5 Cluster validity -- 3. Section: Fuzzy algorithms -- 3.1 Introduction -- 3.2 Fuzzy K-means -- 3.3 Fuzzy K-medoids -- 3.4 Other fuzzy variants -- 3.5 Cluster validity -- 4. Section: Model-based algorithms -- 4.1 Introduction -- 4.2 Mixture of Gaussian distributions -- 4.3 Mixture of non-Gaussian distributions -- 4.4 Parsimonious mixture models.
The purpose of this book is to thoroughly prepare the reader for applied research in clustering. Cluster analysis comprises a class of statistical techniques for classifying multivariate data into groups or clusters based on their similar features. Clustering is nowadays widely used in several domains of research, such as social sciences, psychology, and marketing, highlighting its multidisciplinary nature. This book provides an accessible and comprehensive introduction to clustering and offers practical guidelines for applying clustering tools by carefully chosen real-life datasets and extensive data analyses. The procedures addressed in this book include traditional hard clustering methods and up-to-date developments in soft clustering. Attention is paid to practical examples and applications through the open source statistical software R. Commented R code and output for conducting, step by step, complete cluster analyses are available. The book is intended for researchers interested in applying clustering methods. Basic notions on theoretical issues and on R are provided so that professionals as well as novices with little or no background in the subject will benefit from the book.
ISBN: 9789811305535
Standard No.: 10.1007/978-981-13-0553-5doiSubjects--Topical Terms:
562995
Cluster analysis.
LC Class. No.: QA278.55 / .G567 2020
Dewey Class. No.: 519.5
An introduction to clustering with R
LDR
:02890nmm a2200337 a 4500
001
2256050
003
DE-He213
005
20201228133320.0
006
m d
007
cr nn 008maaau
008
220420s2020 si s 0 eng d
020
$a
9789811305535
$q
(electronic bk.)
020
$a
9789811305528
$q
(paper)
024
7
$a
10.1007/978-981-13-0553-5
$2
doi
035
$a
978-981-13-0553-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA278.55
$b
.G567 2020
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
082
0 4
$a
519.5
$2
23
090
$a
QA278.55
$b
.G497 2020
100
1
$a
Giordani, Paolo.
$3
3526039
245
1 3
$a
An introduction to clustering with R
$h
[electronic resource] /
$c
by Paolo Giordani, Maria Brigida Ferraro, Francesca Martella.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2020.
300
$a
xvii, 340 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Behaviormetrics: quantitative approaches to human behavior,
$x
2524-4027 ;
$v
v.1
505
0
$a
Section: Introduction -- 1.1 Introduction to clustering -- 1.2 R software -- 2. Section: Standard algorithms -- 2.1 Introduction -- 2.2 Distances and dissimilarities -- 2.3 Hierarchical methods -- 2.4 Non-hierarchical methods -- 2.5 Cluster validity -- 3. Section: Fuzzy algorithms -- 3.1 Introduction -- 3.2 Fuzzy K-means -- 3.3 Fuzzy K-medoids -- 3.4 Other fuzzy variants -- 3.5 Cluster validity -- 4. Section: Model-based algorithms -- 4.1 Introduction -- 4.2 Mixture of Gaussian distributions -- 4.3 Mixture of non-Gaussian distributions -- 4.4 Parsimonious mixture models.
520
$a
The purpose of this book is to thoroughly prepare the reader for applied research in clustering. Cluster analysis comprises a class of statistical techniques for classifying multivariate data into groups or clusters based on their similar features. Clustering is nowadays widely used in several domains of research, such as social sciences, psychology, and marketing, highlighting its multidisciplinary nature. This book provides an accessible and comprehensive introduction to clustering and offers practical guidelines for applying clustering tools by carefully chosen real-life datasets and extensive data analyses. The procedures addressed in this book include traditional hard clustering methods and up-to-date developments in soft clustering. Attention is paid to practical examples and applications through the open source statistical software R. Commented R code and output for conducting, step by step, complete cluster analyses are available. The book is intended for researchers interested in applying clustering methods. Basic notions on theoretical issues and on R are provided so that professionals as well as novices with little or no background in the subject will benefit from the book.
650
0
$a
Cluster analysis.
$3
562995
650
0
$a
Statistics.
$3
517247
650
0
$a
Biometry.
$3
531975
650
0
$a
R (Computer program language)
$3
784593
650
1 4
$a
Statistical Theory and Methods.
$3
891074
650
2 4
$a
Statistics and Computing/Statistics Programs.
$3
894293
650
2 4
$a
Applied Statistics.
$3
3300946
650
2 4
$a
Biostatistics.
$3
1002712
700
1
$a
Ferraro, Maria Brigida.
$3
2163012
700
1
$a
Martella, Francesca.
$3
3526040
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Behaviormetrics: quantitative approaches to human behavior ;
$v
v.1.
$3
3526041
856
4 0
$u
https://doi.org/10.1007/978-981-13-0553-5
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9411686
電子資源
11.線上閱覽_V
電子書
EB QA278.55 .G567 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入