語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Edge AI = convergence of edge comput...
~
Wang, Xiaofei.
FindBook
Google Book
Amazon
博客來
Edge AI = convergence of edge computing and artificial intelligence /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Edge AI/ by Xiaofei Wang ... [et al.].
其他題名:
convergence of edge computing and artificial intelligence /
其他作者:
Wang, Xiaofei.
出版者:
Singapore :Springer Singapore : : 2020.,
面頁冊數:
xvii, 149 p. :ill., digital ;24 cm.
內容註:
Part I. Introduction and Fundamentals -- Chapter 1. Introduction -- Chapter 2. Fundamentals of Edge Computing -- Chapter 3. Fundamentals of Artificial Intelligence -- Part II. Artificial Intelligence and Edge Computing -- Chapter 4. Artificial Intelligence Applications on Edge -- Chapter 5. Artificial Intelligence Inference in Edge -- Chapter 6. Artificial Intelligence Training at Edge -- Chapter 7. Edge Computing for Artificial Intelligence -- Chapter 8. Artificial Intelligence for Optimizing Edge -- Part III. Challenges and Conclusions -- Chapter 9. Lessons Learned and Open Challenges -- Chapter 10. Conclusions.
Contained By:
Springer Nature eBook
標題:
Artificial intelligence. -
電子資源:
https://doi.org/10.1007/978-981-15-6186-3
ISBN:
9789811561863
Edge AI = convergence of edge computing and artificial intelligence /
Edge AI
convergence of edge computing and artificial intelligence /[electronic resource] :by Xiaofei Wang ... [et al.]. - Singapore :Springer Singapore :2020. - xvii, 149 p. :ill., digital ;24 cm.
Part I. Introduction and Fundamentals -- Chapter 1. Introduction -- Chapter 2. Fundamentals of Edge Computing -- Chapter 3. Fundamentals of Artificial Intelligence -- Part II. Artificial Intelligence and Edge Computing -- Chapter 4. Artificial Intelligence Applications on Edge -- Chapter 5. Artificial Intelligence Inference in Edge -- Chapter 6. Artificial Intelligence Training at Edge -- Chapter 7. Edge Computing for Artificial Intelligence -- Chapter 8. Artificial Intelligence for Optimizing Edge -- Part III. Challenges and Conclusions -- Chapter 9. Lessons Learned and Open Challenges -- Chapter 10. Conclusions.
As an important enabler for changing people's lives, advances in artificial intelligence (AI)-based applications and services are on the rise, despite being hindered by efficiency and latency issues. By focusing on deep learning as the most representative technique of AI, this book provides a comprehensive overview of how AI services are being applied to the network edge near the data sources, and demonstrates how AI and edge computing can be mutually beneficial. To do so, it introduces and discusses: 1) edge intelligence and intelligent edge; and 2) their implementation methods and enabling technologies, namely AI training and inference in the customized edge computing framework. Gathering essential information previously scattered across the communication, networking, and AI areas, the book can help readers to understand the connections between key enabling technologies, e.g. a) AI applications in edge; b) AI inference in edge; c) AI training for edge; d) edge computing for AI; and e) using AI to optimize edge. After identifying these five aspects, which are essential for the fusion of edge computing and AI, it discusses current challenges and outlines future trends in achieving more pervasive and fine-grained intelligence with the aid of edge computing.
ISBN: 9789811561863
Standard No.: 10.1007/978-981-15-6186-3doiSubjects--Topical Terms:
516317
Artificial intelligence.
LC Class. No.: Q335
Dewey Class. No.: 006.3
Edge AI = convergence of edge computing and artificial intelligence /
LDR
:02884nmm a2200325 a 4500
001
2255741
003
DE-He213
005
20200831110816.0
006
m d
007
cr nn 008maaau
008
220420s2020 si s 0 eng d
020
$a
9789811561863
$q
(electronic bk.)
020
$a
9789811561856
$q
(paper)
024
7
$a
10.1007/978-981-15-6186-3
$2
doi
035
$a
978-981-15-6186-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q335
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
090
$a
Q335
$b
.E23 2020
245
0 0
$a
Edge AI
$h
[electronic resource] :
$b
convergence of edge computing and artificial intelligence /
$c
by Xiaofei Wang ... [et al.].
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2020.
300
$a
xvii, 149 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Part I. Introduction and Fundamentals -- Chapter 1. Introduction -- Chapter 2. Fundamentals of Edge Computing -- Chapter 3. Fundamentals of Artificial Intelligence -- Part II. Artificial Intelligence and Edge Computing -- Chapter 4. Artificial Intelligence Applications on Edge -- Chapter 5. Artificial Intelligence Inference in Edge -- Chapter 6. Artificial Intelligence Training at Edge -- Chapter 7. Edge Computing for Artificial Intelligence -- Chapter 8. Artificial Intelligence for Optimizing Edge -- Part III. Challenges and Conclusions -- Chapter 9. Lessons Learned and Open Challenges -- Chapter 10. Conclusions.
520
$a
As an important enabler for changing people's lives, advances in artificial intelligence (AI)-based applications and services are on the rise, despite being hindered by efficiency and latency issues. By focusing on deep learning as the most representative technique of AI, this book provides a comprehensive overview of how AI services are being applied to the network edge near the data sources, and demonstrates how AI and edge computing can be mutually beneficial. To do so, it introduces and discusses: 1) edge intelligence and intelligent edge; and 2) their implementation methods and enabling technologies, namely AI training and inference in the customized edge computing framework. Gathering essential information previously scattered across the communication, networking, and AI areas, the book can help readers to understand the connections between key enabling technologies, e.g. a) AI applications in edge; b) AI inference in edge; c) AI training for edge; d) edge computing for AI; and e) using AI to optimize edge. After identifying these five aspects, which are essential for the fusion of edge computing and AI, it discusses current challenges and outlines future trends in achieving more pervasive and fine-grained intelligence with the aid of edge computing.
650
0
$a
Artificial intelligence.
$3
516317
650
0
$a
Edge computing.
$3
3489844
650
2 4
$a
Computer Communication Networks.
$3
775497
650
2 4
$a
Computer Systems Organization and Communication Networks.
$3
891212
700
1
$a
Wang, Xiaofei.
$3
1913285
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-981-15-6186-3
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9411377
電子資源
11.線上閱覽_V
電子書
EB Q335
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入