語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine learning with quantum computers
~
Schuld, Maria.
FindBook
Google Book
Amazon
博客來
Machine learning with quantum computers
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Machine learning with quantum computers/ by Maria Schuld, Francesco Petruccione.
作者:
Schuld, Maria.
其他作者:
Petruccione, F.
出版者:
Cham :Springer International Publishing : : 2021.,
面頁冊數:
xiv, 312 p. :ill. (some col.), digital ;24 cm.
內容註:
Chapter 1. Introduction -- Chapter 2. Machine Learning -- Chapter 3. Quantum Computing -- Chapter 4. Representing Data on a Quantum Computer -- Chapter 5. Variational Circuits as Machine Learning Models -- Chapter 6. Quantum Models as Kernel Methods -- Chapter 7. Fault-Tolerant Quantum Machine Learning -- Chapter 8. Approaches Based on the Ising Model -- Chapter 9. Potential Quantum Advantages.
Contained By:
Springer Nature eBook
標題:
Machine learning. -
電子資源:
https://doi.org/10.1007/978-3-030-83098-4
ISBN:
9783030830984
Machine learning with quantum computers
Schuld, Maria.
Machine learning with quantum computers
[electronic resource] /by Maria Schuld, Francesco Petruccione. - Second edition. - Cham :Springer International Publishing :2021. - xiv, 312 p. :ill. (some col.), digital ;24 cm. - Quantum science and technology,2364-9062. - Quantum science and technology..
Chapter 1. Introduction -- Chapter 2. Machine Learning -- Chapter 3. Quantum Computing -- Chapter 4. Representing Data on a Quantum Computer -- Chapter 5. Variational Circuits as Machine Learning Models -- Chapter 6. Quantum Models as Kernel Methods -- Chapter 7. Fault-Tolerant Quantum Machine Learning -- Chapter 8. Approaches Based on the Ising Model -- Chapter 9. Potential Quantum Advantages.
This book offers an introduction into quantum machine learning research, covering approaches that range from "near-term" to fault-tolerant quantum machine learning algorithms, and from theoretical to practical techniques that help us understand how quantum computers can learn from data. Among the topics discussed are parameterized quantum circuits, hybrid optimization, data encoding, quantum feature maps and kernel methods, quantum learning theory, as well as quantum neural networks. The book aims at an audience of computer scientists and physicists at the graduate level onwards. The second edition extends the material beyond supervised learning and puts a special focus on the developments in near-term quantum machine learning seen over the past few years.
ISBN: 9783030830984
Standard No.: 10.1007/978-3-030-83098-4doiSubjects--Topical Terms:
533906
Machine learning.
LC Class. No.: Q325.5 / .S34 2021
Dewey Class. No.: 006.31
Machine learning with quantum computers
LDR
:02248nmm a2200349 a 4500
001
2253837
003
DE-He213
005
20211017113706.0
006
m d
007
cr nn 008maaau
008
220327s2021 sz s 0 eng d
020
$a
9783030830984
$q
(electronic bk.)
020
$a
9783030830977
$q
(paper)
024
7
$a
10.1007/978-3-030-83098-4
$2
doi
035
$a
978-3-030-83098-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
$b
.S34 2021
072
7
$a
UYA
$2
bicssc
072
7
$a
SCI057000
$2
bisacsh
072
7
$a
UYA
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.S386 2021
100
1
$a
Schuld, Maria.
$3
3522417
245
1 0
$a
Machine learning with quantum computers
$h
[electronic resource] /
$c
by Maria Schuld, Francesco Petruccione.
250
$a
Second edition.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xiv, 312 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Quantum science and technology,
$x
2364-9062
505
0
$a
Chapter 1. Introduction -- Chapter 2. Machine Learning -- Chapter 3. Quantum Computing -- Chapter 4. Representing Data on a Quantum Computer -- Chapter 5. Variational Circuits as Machine Learning Models -- Chapter 6. Quantum Models as Kernel Methods -- Chapter 7. Fault-Tolerant Quantum Machine Learning -- Chapter 8. Approaches Based on the Ising Model -- Chapter 9. Potential Quantum Advantages.
520
$a
This book offers an introduction into quantum machine learning research, covering approaches that range from "near-term" to fault-tolerant quantum machine learning algorithms, and from theoretical to practical techniques that help us understand how quantum computers can learn from data. Among the topics discussed are parameterized quantum circuits, hybrid optimization, data encoding, quantum feature maps and kernel methods, quantum learning theory, as well as quantum neural networks. The book aims at an audience of computer scientists and physicists at the graduate level onwards. The second edition extends the material beyond supervised learning and puts a special focus on the developments in near-term quantum machine learning seen over the past few years.
650
0
$a
Machine learning.
$3
533906
650
0
$a
Quantum computing.
$3
2115803
650
1 4
$a
Quantum Computing.
$3
1620399
650
2 4
$a
Machine Learning.
$3
3382522
650
2 4
$a
Mathematics, general.
$3
895821
700
1
$a
Petruccione, F.
$q
(Francesco).
$3
765848
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Quantum science and technology.
$3
2054889
856
4 0
$u
https://doi.org/10.1007/978-3-030-83098-4
950
$a
Physics and Astronomy (SpringerNature-11651)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9410359
電子資源
11.線上閱覽_V
電子書
EB Q325.5 .S34 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入