語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Comparison Finsler geometry
~
Ohta, Shin-ichi.
FindBook
Google Book
Amazon
博客來
Comparison Finsler geometry
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Comparison Finsler geometry/ by Shin-ichi Ohta.
作者:
Ohta, Shin-ichi.
出版者:
Cham :Springer International Publishing : : 2021.,
面頁冊數:
xxii, 316 p. :ill., digital ;24 cm.
內容註:
I Foundations of Finsler Geometry -- 1. Warm-up: Norms and inner products -- 2. Finsler manifolds -- 3. Properties of geodesics -- 4. Covariant derivatives -- 5. Curvature -- 6. Examples of Finsler manifolds -- 7. Variation formulas for arclength -- 8. Some comparison theorems -- II Geometry and analysis of weighted Ricci curvature -- 9. Weighted Ricci curvature -- 10. Examples of measured Finsler manifolds -- 11. The nonlinear Laplacian -- 12. The Bochner-Weitzenbock formula -- 13. Nonlinear heat flow -- 14. Gradient estimates -- 15. Bakry-Ledoux isoperimetric inequality -- 16. Functional inequalities -- III Further topics -- 17. Splitting theorems -- 18. Curvature-dimension condition -- 19. Needle decompositions.
Contained By:
Springer Nature eBook
標題:
Finsler spaces. -
電子資源:
https://doi.org/10.1007/978-3-030-80650-7
ISBN:
9783030806507
Comparison Finsler geometry
Ohta, Shin-ichi.
Comparison Finsler geometry
[electronic resource] /by Shin-ichi Ohta. - Cham :Springer International Publishing :2021. - xxii, 316 p. :ill., digital ;24 cm. - Springer monographs in mathematics,2196-9922. - Springer monographs in mathematics..
I Foundations of Finsler Geometry -- 1. Warm-up: Norms and inner products -- 2. Finsler manifolds -- 3. Properties of geodesics -- 4. Covariant derivatives -- 5. Curvature -- 6. Examples of Finsler manifolds -- 7. Variation formulas for arclength -- 8. Some comparison theorems -- II Geometry and analysis of weighted Ricci curvature -- 9. Weighted Ricci curvature -- 10. Examples of measured Finsler manifolds -- 11. The nonlinear Laplacian -- 12. The Bochner-Weitzenbock formula -- 13. Nonlinear heat flow -- 14. Gradient estimates -- 15. Bakry-Ledoux isoperimetric inequality -- 16. Functional inequalities -- III Further topics -- 17. Splitting theorems -- 18. Curvature-dimension condition -- 19. Needle decompositions.
This monograph presents recent developments in comparison geometry and geometric analysis on Finsler manifolds. Generalizing the weighted Ricci curvature into the Finsler setting, the author systematically derives the fundamental geometric and analytic inequalities in the Finsler context. Relying only upon knowledge of differentiable manifolds, this treatment offers an accessible entry point to Finsler geometry for readers new to the area. Divided into three parts, the book begins by establishing the fundamentals of Finsler geometry, including Jacobi fields and curvature tensors, variation formulas for arc length, and some classical comparison theorems. Part II goes on to introduce the weighted Ricci curvature, nonlinear Laplacian, and nonlinear heat flow on Finsler manifolds. These tools allow the derivation of the Bochner-Weitzenbock formula and the corresponding Bochner inequality, gradient estimates, Bakry-Ledoux's Gaussian isoperimetric inequality, and functional inequalities in the Finsler setting. Part III comprises advanced topics: a generalization of the classical Cheeger-Gromoll splitting theorem, the curvature-dimension condition, and the needle decomposition. Throughout, geometric descriptions illuminate the intuition behind the results, while exercises provide opportunities for active engagement. Comparison Finsler Geometry offers an ideal gateway to the study of Finsler manifolds for graduate students and researchers. Knowledge of differentiable manifold theory is assumed, along with the fundamentals of functional analysis. Familiarity with Riemannian geometry is not required, though readers with a background in the area will find their insights are readily transferrable.
ISBN: 9783030806507
Standard No.: 10.1007/978-3-030-80650-7doiSubjects--Topical Terms:
704987
Finsler spaces.
LC Class. No.: QA689 / .O48 2021
Dewey Class. No.: 516.375
Comparison Finsler geometry
LDR
:03456nmm a2200337 a 4500
001
2253757
003
DE-He213
005
20211009190203.0
006
m d
007
cr nn 008maaau
008
220327s2021 sz s 0 eng d
020
$a
9783030806507
$q
(electronic bk.)
020
$a
9783030806491
$q
(paper)
024
7
$a
10.1007/978-3-030-80650-7
$2
doi
035
$a
978-3-030-80650-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA689
$b
.O48 2021
072
7
$a
PBMP
$2
bicssc
072
7
$a
MAT012030
$2
bisacsh
072
7
$a
PBMP
$2
thema
082
0 4
$a
516.375
$2
23
090
$a
QA689
$b
.O38 2021
100
1
$a
Ohta, Shin-ichi.
$3
3522285
245
1 0
$a
Comparison Finsler geometry
$h
[electronic resource] /
$c
by Shin-ichi Ohta.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xxii, 316 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer monographs in mathematics,
$x
2196-9922
505
0
$a
I Foundations of Finsler Geometry -- 1. Warm-up: Norms and inner products -- 2. Finsler manifolds -- 3. Properties of geodesics -- 4. Covariant derivatives -- 5. Curvature -- 6. Examples of Finsler manifolds -- 7. Variation formulas for arclength -- 8. Some comparison theorems -- II Geometry and analysis of weighted Ricci curvature -- 9. Weighted Ricci curvature -- 10. Examples of measured Finsler manifolds -- 11. The nonlinear Laplacian -- 12. The Bochner-Weitzenbock formula -- 13. Nonlinear heat flow -- 14. Gradient estimates -- 15. Bakry-Ledoux isoperimetric inequality -- 16. Functional inequalities -- III Further topics -- 17. Splitting theorems -- 18. Curvature-dimension condition -- 19. Needle decompositions.
520
$a
This monograph presents recent developments in comparison geometry and geometric analysis on Finsler manifolds. Generalizing the weighted Ricci curvature into the Finsler setting, the author systematically derives the fundamental geometric and analytic inequalities in the Finsler context. Relying only upon knowledge of differentiable manifolds, this treatment offers an accessible entry point to Finsler geometry for readers new to the area. Divided into three parts, the book begins by establishing the fundamentals of Finsler geometry, including Jacobi fields and curvature tensors, variation formulas for arc length, and some classical comparison theorems. Part II goes on to introduce the weighted Ricci curvature, nonlinear Laplacian, and nonlinear heat flow on Finsler manifolds. These tools allow the derivation of the Bochner-Weitzenbock formula and the corresponding Bochner inequality, gradient estimates, Bakry-Ledoux's Gaussian isoperimetric inequality, and functional inequalities in the Finsler setting. Part III comprises advanced topics: a generalization of the classical Cheeger-Gromoll splitting theorem, the curvature-dimension condition, and the needle decomposition. Throughout, geometric descriptions illuminate the intuition behind the results, while exercises provide opportunities for active engagement. Comparison Finsler Geometry offers an ideal gateway to the study of Finsler manifolds for graduate students and researchers. Knowledge of differentiable manifold theory is assumed, along with the fundamentals of functional analysis. Familiarity with Riemannian geometry is not required, though readers with a background in the area will find their insights are readily transferrable.
650
0
$a
Finsler spaces.
$3
704987
650
0
$a
Manifolds (Mathematics)
$3
612607
650
1 4
$a
Differential Geometry.
$3
891003
650
2 4
$a
Global Analysis and Analysis on Manifolds.
$3
891107
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Springer monographs in mathematics.
$3
1535313
856
4 0
$u
https://doi.org/10.1007/978-3-030-80650-7
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9410279
電子資源
11.線上閱覽_V
電子書
EB QA689 .O48 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入