Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Spatially explicit hyperparameter op...
~
Zheng, Minrui.
Linked to FindBook
Google Book
Amazon
博客來
Spatially explicit hyperparameter optimization for neural networks
Record Type:
Electronic resources : Monograph/item
Title/Author:
Spatially explicit hyperparameter optimization for neural networks/ by Minrui Zheng.
Author:
Zheng, Minrui.
Published:
Singapore :Springer Singapore : : 2021.,
Description:
xix, 108 p. :ill., digital ;24 cm.
[NT 15003449]:
Chapter 1: Introduction -- Chapter 2: Literature Review -- Chapter 3: Methodology -- Chapter 4: Study I. Hyperparameter optimization of neural network-driven spatial models accelerated using cyber-enabled high-performance computing -- Chapter 5: Study II. Spatially explicit hyperparameter optimization of neural networks accelerated using high-performance computing -- Chapter 6: Study III. An integration of spatially explicit hyperparameter optimization with convolutional neural networks-based spatial models.
Contained By:
Springer Nature eBook
Subject:
Neural networks (Computer science) -
Online resource:
https://doi.org/10.1007/978-981-16-5399-5
ISBN:
9789811653995
Spatially explicit hyperparameter optimization for neural networks
Zheng, Minrui.
Spatially explicit hyperparameter optimization for neural networks
[electronic resource] /by Minrui Zheng. - Singapore :Springer Singapore :2021. - xix, 108 p. :ill., digital ;24 cm.
Chapter 1: Introduction -- Chapter 2: Literature Review -- Chapter 3: Methodology -- Chapter 4: Study I. Hyperparameter optimization of neural network-driven spatial models accelerated using cyber-enabled high-performance computing -- Chapter 5: Study II. Spatially explicit hyperparameter optimization of neural networks accelerated using high-performance computing -- Chapter 6: Study III. An integration of spatially explicit hyperparameter optimization with convolutional neural networks-based spatial models.
Neural networks as the commonly used machine learning algorithms, such as artificial neural networks (ANNs) and convolutional neural networks (CNNs), have been extensively used in the GIScience domain to explore the nonlinear and complex geographic phenomena. However, there are a few studies that investigate the parameter settings of neural networks in GIScience. Moreover, the model performance of neural networks often depends on the parameter setting for a given dataset. Meanwhile, adjusting the parameter configuration of neural networks will increase the overall running time. Therefore, an automated approach is necessary for addressing these limitations in current studies. This book proposes an automated spatially explicit hyperparameter optimization approach to identify optimal or near-optimal parameter settings for neural networks in the GIScience field. Also, the approach improves the computing performance at both model and computing levels. This book is written for researchers of the GIScience field as well as social science subjects.
ISBN: 9789811653995
Standard No.: 10.1007/978-981-16-5399-5doiSubjects--Topical Terms:
532070
Neural networks (Computer science)
LC Class. No.: QA76.87 / .Z44 2021
Dewey Class. No.: 006.32
Spatially explicit hyperparameter optimization for neural networks
LDR
:02569nmm a2200325 a 4500
001
2253586
003
DE-He213
005
20211018115807.0
006
m d
007
cr nn 008maaau
008
220327s2021 si s 0 eng d
020
$a
9789811653995
$q
(electronic bk.)
020
$a
9789811653988
$q
(paper)
024
7
$a
10.1007/978-981-16-5399-5
$2
doi
035
$a
978-981-16-5399-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.87
$b
.Z44 2021
072
7
$a
UB
$2
bicssc
072
7
$a
COM018000
$2
bisacsh
072
7
$a
UB
$2
thema
082
0 4
$a
006.32
$2
23
090
$a
QA76.87
$b
.Z63 2021
100
1
$a
Zheng, Minrui.
$3
3521913
245
1 0
$a
Spatially explicit hyperparameter optimization for neural networks
$h
[electronic resource] /
$c
by Minrui Zheng.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2021.
300
$a
xix, 108 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Chapter 1: Introduction -- Chapter 2: Literature Review -- Chapter 3: Methodology -- Chapter 4: Study I. Hyperparameter optimization of neural network-driven spatial models accelerated using cyber-enabled high-performance computing -- Chapter 5: Study II. Spatially explicit hyperparameter optimization of neural networks accelerated using high-performance computing -- Chapter 6: Study III. An integration of spatially explicit hyperparameter optimization with convolutional neural networks-based spatial models.
520
$a
Neural networks as the commonly used machine learning algorithms, such as artificial neural networks (ANNs) and convolutional neural networks (CNNs), have been extensively used in the GIScience domain to explore the nonlinear and complex geographic phenomena. However, there are a few studies that investigate the parameter settings of neural networks in GIScience. Moreover, the model performance of neural networks often depends on the parameter setting for a given dataset. Meanwhile, adjusting the parameter configuration of neural networks will increase the overall running time. Therefore, an automated approach is necessary for addressing these limitations in current studies. This book proposes an automated spatially explicit hyperparameter optimization approach to identify optimal or near-optimal parameter settings for neural networks in the GIScience field. Also, the approach improves the computing performance at both model and computing levels. This book is written for researchers of the GIScience field as well as social science subjects.
650
0
$a
Neural networks (Computer science)
$3
532070
650
0
$a
Mathematical optimization.
$3
517763
650
1 4
$a
Computer Applications.
$3
891249
650
2 4
$a
Geography, general.
$3
2162156
650
2 4
$a
Artificial Intelligence.
$3
769149
650
2 4
$a
Environmental Policy.
$3
676769
650
2 4
$a
Sociology, general.
$3
1565473
650
2 4
$a
Economic Geography.
$3
676774
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-981-16-5399-5
950
$a
Earth and Environmental Science (SpringerNature-11646)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9410108
電子資源
11.線上閱覽_V
電子書
EB QA76.87 .Z44 2021
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login