Data mining and big data = 6th Inter...
International Conference on Data Mining and Big Data (2021 :)

FindBook      Google Book      Amazon      博客來     
  • Data mining and big data = 6th International Conference, DMBD 2021, Guangzhou, China, October 20-22, 2021 : proceedings.. Part I /
  • 紀錄類型: 書目-電子資源 : Monograph/item
    正題名/作者: Data mining and big data/ edited by Ying Tan ... [et al.].
    其他題名: 6th International Conference, DMBD 2021, Guangzhou, China, October 20-22, 2021 : proceedings.
    其他題名: DMBD 2021
    其他作者: Tan, Ying,
    團體作者: International Conference on Data Mining and Big Data
    出版者: Singapore :Springer Singapore : : 2021.,
    面頁冊數: xviii, 501 p. :ill., digital ;24 cm.
    內容註: Intro -- Preface -- Organization -- Contents - Part I -- Contents - Part II -- BSMRL: Bribery Selfish Mining with Reinforcement Learning -- 1 Introduction -- 1.1 Related Work -- 2 Preliminaries -- 2.1 Selfish Mining -- 2.2 Bribery Attack -- 2.3 Reinforcement Learning -- 3 Modeling BSMRL -- 3.1 Constructing the Environment -- 3.2 The Attacker's Mining Strategy -- 4 Simulation -- 5 Conclusion and Future Work -- References -- The Theoretical Analysis of Multi-dividing Ontology Learning by Rademacher Vector -- 1 Introduction 2 Ontology Learning Framework in Multi-dividing Setting and Prerequisite Knowledge -- 3 Main Result and Proof -- 4 Conclusion -- References -- A Group Blind Signature Scheme for Privacy Protection of Power Big Data in Smart Grid -- Abstract -- 1 Introduction -- 2 Preliminaries -- 2.1 Group Blind Signature -- 2.2 Schnorr Identification Protocol -- 3 System Model and Adversary Model -- 3.1 System Model -- 3.2 Adversary Model -- 4 Our Scheme -- 4.1 System Initialization -- 4.2 User Anonymous Authentication and Data Reporting -- 4.3 Blindly Signature on the Message 4.4 Verification and Traceability -- 5 Security Analysis -- 5.1 Authenticatability -- 5.2 Privacy Protection -- 5.3 Anonymity -- 5.4 Unforgeability -- 5.5 Traceability -- 6 Conclusion -- References -- MB Based Multi-dividing Ontology Learning Trick -- 1 Introduction -- 2 MB Based Multi-dividing Ontology Learning Algorithm -- 3 Experiments -- 3.1 Experiment on Mathematics-Physics Disciplines -- 3.2 Ontology Mapping on Sponge City Rainwater Treatment System Ontologies -- 3.3 Experiment on Chemical Index Ontology -- 4 Conclusion -- References Application of LSTM Model Optimized Based on Adaptive Genetic Algorithm in Stock Forecasting -- Abstract -- 1 Introduction -- 2 Algorithm Background -- 3 Problem Description -- 4 Algorithm Description -- 4.1 Genes Code -- 4.2 Crossover Operator -- 4.3 Mutation Operator -- 4.4 Steps of the Algorithm -- 5 Experimental Result -- 6 Conclusion -- Acknowledgement -- References -- A Network Based Quantitative Method for the Mining and Visualization of Music Influence -- Abstract -- 1 Introduction -- 2 Notations -- 3 LMIFNC Model for Influencer-Follower Network -- 3.1 Features of "Music Influence" 3.2 The Influence of Artist -- 3.2.1 The Initial Influence of Artist Drawn from Linkage -- 3.2.2 Logarithm Function for Time-Offset Correction Coefficient C -- 3.2.3 Assigning Weight to the Edges of Influencer-Follower Network -- 3.3 Deriving Influencer-Follower Network and Subnetwork -- 3.3.1 Definition of Modularity and Increment of Modularity -- 3.3.2 Louvain Method -- 3.3.3 Process of Proposed LMIFNC for Influencer-Follower Network Construction -- 4 Experimental Results and Discussion -- 4.1 Data Set -- 4.2 Results and Visualization -- 5 Conclusion and Future Work -- References.
    Contained By: Springer Nature eBook
    標題: Data mining - Congresses. -
    電子資源: https://doi.org/10.1007/978-981-16-7476-1
    ISBN: 9789811674761
館藏地:  出版年:  卷號: 
館藏
  • 1 筆 • 頁數 1 •
 
W9410034 電子資源 11.線上閱覽_V 電子書 EB QA76.9.D343 I58 2021 一般使用(Normal) 在架 0
  • 1 筆 • 頁數 1 •
多媒體
評論
Export
取書館
 
 
變更密碼
登入