語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Compressive sensing in health care
~
Khosravy, Mahdi.
FindBook
Google Book
Amazon
博客來
Compressive sensing in health care
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Compressive sensing in health care/ edited by Mahdi Khosravy, Nilanjan Dey, Carlos A. Duque.
其他作者:
Khosravy, Mahdi.
出版者:
London :Academic Press, : 2020.,
面頁冊數:
1 online resource.
附註:
Includes index.
內容註:
Front Cover -- Compressive Sensing in Healthcare -- Copyright -- Contents -- List of contributors -- 1 Compressive sensing theoretical foundations in a nutshell -- 1.1 Introduction -- 1.2 Digital signal acquisition -- 1.3 Vectorial representation of signal -- l1 norm -- l2 norm -- l∞norm -- Spheres made by different lp norms as distance criterion -- Basis/dictionary -- Orthonormal basis/dictionary -- Frame/ over-complete dictionary -- Alternate/dual frame -- 1.4 Sparsity -- k-sparse signal -- Non-linearity of sparsity -- Sparsity and compressibility -- 1.5 Compressive sensing
內容註:
Compressive sensing model -- 1.6 Essential properties of compressive sensing matrix -- 1.6.1 Null space property (NSP) -- The essence of the concept of recovery -- Maximum compression in compressive sensing (lower bound of m) -- 1.6.2 Restricted isometry property -- 1.6.3 Coherence a simple way to check NSP -- Relation between coherence and spark of a matrix -- Coherence approach to RIP -- 1.7 Summary -- 1.A -- Null space property of order 2k -- References -- 2 Recovery in compressive sensing: a review -- 2.1 Introduction -- 2.1.1 Compressive sensing formulation
內容註:
2.2 Criteria required for a compressive sensing matrix -- 2.2.1 Null space property -- Null space property of order k -- 2.2.1.1 Uniqueness theorem [46] -- Maximum compression in compressive sensing -- 2.2.2 Restricted isometry property -- 2.2.3 Coherence property -- 2.2.3.1 Coherence and spark of a matrix -- 2.2.3.2 The upper bound of sparsity level -- 2.3 Recovery -- 2.3.1 Recovery via minimization of l1 norm -- 2.3.2 Greedy algorithms -- 2.3.2.1 Pursuits -- 2.3.2.2Matching pursuit -- 2.3.2.3 Orthogonal matching pursuit -- 2.3.2.4 Iterative hard thresholding -- 2.4 Summary -- References
內容註:
Measure SGini -- 3.5 Summary -- References -- 4 Compressive sensing in practice and potential advancements -- 4.1 Introduction -- 4.2 Compressive sensing theory -- 4.3 Example compressive sensing implementations -- 4.3.1 Compressivesensing in physiological signal monitoring -- In the eld application results -- 4.3.2 Compressive sensing in THEMIS imaging -- In-the- eld application results -- 4.4 Review of CS literature -- 4.4.1 Practical manifestations of theoretical bounds -- 4.5 Advancements in compressive sensing -- 4.5.1 Personalized basis -- Challenges
標題:
Compressed sensing (Telecommunication) -
電子資源:
https://www.sciencedirect.com/science/book/9780128212479
ISBN:
9780128212486 (electronic bk.)
Compressive sensing in health care
Compressive sensing in health care
[electronic resource] /edited by Mahdi Khosravy, Nilanjan Dey, Carlos A. Duque. - London :Academic Press,2020. - 1 online resource. - Advances in ubiquitous sensing applications for healthcare. - Advances in ubiquitous sensing applications for healthcare..
Includes index.
Front Cover -- Compressive Sensing in Healthcare -- Copyright -- Contents -- List of contributors -- 1 Compressive sensing theoretical foundations in a nutshell -- 1.1 Introduction -- 1.2 Digital signal acquisition -- 1.3 Vectorial representation of signal -- l1 norm -- l2 norm -- l∞norm -- Spheres made by different lp norms as distance criterion -- Basis/dictionary -- Orthonormal basis/dictionary -- Frame/ over-complete dictionary -- Alternate/dual frame -- 1.4 Sparsity -- k-sparse signal -- Non-linearity of sparsity -- Sparsity and compressibility -- 1.5 Compressive sensing
ISBN: 9780128212486 (electronic bk.)Subjects--Topical Terms:
3214582
Compressed sensing (Telecommunication)
Index Terms--Genre/Form:
542853
Electronic books.
LC Class. No.: TA1638
Dewey Class. No.: 621.382/2
Compressive sensing in health care
LDR
:03256cmm a2200301 a 4500
001
2245934
006
m o d
007
cr |n|||||||||
008
211223s2020 enka go 001 0 eng d
020
$a
9780128212486 (electronic bk.)
020
$a
0128212489 (electronic bk.)
020
$a
9780128212479
020
$a
0128212470
035
$a
(OCoLC)1155163035
035
$a
on1155163035
040
$a
YDX
$b
eng
$c
YDX
$d
OPELS
$d
OCLCF
$d
UKMGB
$d
EBLCP
$d
NLE
$d
OCLCO
$d
OCLCA
041
0
$a
eng
050
4
$a
TA1638
082
0 4
$a
621.382/2
$2
23
245
0 0
$a
Compressive sensing in health care
$h
[electronic resource] /
$c
edited by Mahdi Khosravy, Nilanjan Dey, Carlos A. Duque.
260
$a
London :
$b
Academic Press,
$c
2020.
300
$a
1 online resource.
490
1
$a
Advances in ubiquitous sensing applications for healthcare
500
$a
Includes index.
505
0
$a
Front Cover -- Compressive Sensing in Healthcare -- Copyright -- Contents -- List of contributors -- 1 Compressive sensing theoretical foundations in a nutshell -- 1.1 Introduction -- 1.2 Digital signal acquisition -- 1.3 Vectorial representation of signal -- l1 norm -- l2 norm -- l∞norm -- Spheres made by different lp norms as distance criterion -- Basis/dictionary -- Orthonormal basis/dictionary -- Frame/ over-complete dictionary -- Alternate/dual frame -- 1.4 Sparsity -- k-sparse signal -- Non-linearity of sparsity -- Sparsity and compressibility -- 1.5 Compressive sensing
505
8
$a
Compressive sensing model -- 1.6 Essential properties of compressive sensing matrix -- 1.6.1 Null space property (NSP) -- The essence of the concept of recovery -- Maximum compression in compressive sensing (lower bound of m) -- 1.6.2 Restricted isometry property -- 1.6.3 Coherence a simple way to check NSP -- Relation between coherence and spark of a matrix -- Coherence approach to RIP -- 1.7 Summary -- 1.A -- Null space property of order 2k -- References -- 2 Recovery in compressive sensing: a review -- 2.1 Introduction -- 2.1.1 Compressive sensing formulation
505
8
$a
2.2 Criteria required for a compressive sensing matrix -- 2.2.1 Null space property -- Null space property of order k -- 2.2.1.1 Uniqueness theorem [46] -- Maximum compression in compressive sensing -- 2.2.2 Restricted isometry property -- 2.2.3 Coherence property -- 2.2.3.1 Coherence and spark of a matrix -- 2.2.3.2 The upper bound of sparsity level -- 2.3 Recovery -- 2.3.1 Recovery via minimization of l1 norm -- 2.3.2 Greedy algorithms -- 2.3.2.1 Pursuits -- 2.3.2.2Matching pursuit -- 2.3.2.3 Orthogonal matching pursuit -- 2.3.2.4 Iterative hard thresholding -- 2.4 Summary -- References
505
8
$a
Measure SGini -- 3.5 Summary -- References -- 4 Compressive sensing in practice and potential advancements -- 4.1 Introduction -- 4.2 Compressive sensing theory -- 4.3 Example compressive sensing implementations -- 4.3.1 Compressivesensing in physiological signal monitoring -- In the eld application results -- 4.3.2 Compressive sensing in THEMIS imaging -- In-the- eld application results -- 4.4 Review of CS literature -- 4.4.1 Practical manifestations of theoretical bounds -- 4.5 Advancements in compressive sensing -- 4.5.1 Personalized basis -- Challenges
650
0
$a
Compressed sensing (Telecommunication)
$3
3214582
650
0
$a
Medical innovations.
$3
605994
650
1 2
$a
Biosensing Techniques.
$3
956063
655
0
$a
Electronic books.
$2
lcsh
$3
542853
700
1
$a
Khosravy, Mahdi.
$3
3450095
700
1
$a
Dey, Nilanjan,
$d
1984-
$3
3408435
700
1
$a
Duque, Carlos A.
$3
3508727
830
0
$a
Advances in ubiquitous sensing applications for healthcare.
$3
3508721
856
4 0
$u
https://www.sciencedirect.com/science/book/9780128212479
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9406429
電子資源
11.線上閱覽_V
電子書
EB TA1638
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入