| Record Type: |
Electronic resources
: Monograph/item
|
| Title/Author: |
Bayesian compendium/ by Marcel van Oijen. |
| Author: |
Oijen, Marcel van. |
| Published: |
Cham :Springer International Publishing : : 2020., |
| Description: |
xiv, 204 p. :ill., digital ;24 cm. |
| [NT 15003449]: |
Preface -- 1 Introduction to Bayesian thinking -- 2 Introduction to Bayesian science -- 3 Assigning a prior distribution -- 4 Assigning a likelihood function -- 5 Deriving the posterior distribution -- 6 Sampling from any distribution by MCMC -- 7 Sampling from the posterior distribution by MCMC -- 8 Twelve ways to fit a straight line -- 9 MCMC and complex models -- 10 Bayesian calibration and MCMC: Frequently asked questions -- 11 After the calibration: Interpretation, reporting, visualization -- 2 Model ensembles: BMC and BMA -- 13 Discrepancy -- 14 Gaussian Processes and model emulation -- 15 Graphical Modelling (GM) -- 16 Bayesian Hierarchical Modelling (BHM) -- 17 Probabilistic risk analysis and Bayesian decision theory -- 18 Approximations to Bayes -- 19 Linear modelling: LM, GLM, GAM and mixed models -- 20 Machine learning -- 21 Time series and data assimilation -- 22 Spatial modelling and scaling error -- 23 Spatio-temporal modelling and adaptive sampling -- 24 What next? -- Appendix 1: Notation and abbreviations -- Appendix 2: Mathematics for modellers -- Appendix 3: Probability theory for modellers -- Appendix 4: R -- Appendix 5: Bayesian software. |
| Contained By: |
Springer Nature eBook |
| Subject: |
Bayesian statistical decision theory. - |
| Online resource: |
https://doi.org/10.1007/978-3-030-55897-0 |
| ISBN: |
9783030558970 |