語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Pseudo-Riemannian homogeneous structures
~
Calvaruso, Giovanni.
FindBook
Google Book
Amazon
博客來
Pseudo-Riemannian homogeneous structures
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Pseudo-Riemannian homogeneous structures/ by Giovanni Calvaruso, Marco Castrillon Lopez.
作者:
Calvaruso, Giovanni.
其他作者:
Castrillon Lopez, Marco.
出版者:
Cham :Springer International Publishing : : 2019.,
面頁冊數:
xv, 230 p. :ill., digital ;24 cm.
內容註:
1 G-structures, holonomy and homogeneous spaces -- 2 Ambrose-Singer connections and homogeneous spaces -- 3 Locally homogeneous pseudo-Riemannian manifolds -- 4 Classification of homogeneous structures -- 5 Homogeneous structures of linear type -- 6 Reduction of homogeneous structures -- 7 Where all this fails: non-reductive homogeneous pseudo-Riemannian manifolds -- Subject Index.
Contained By:
Springer Nature eBook
標題:
Semi-Riemannian geometry. -
電子資源:
https://doi.org/10.1007/978-3-030-18152-9
ISBN:
9783030181529
Pseudo-Riemannian homogeneous structures
Calvaruso, Giovanni.
Pseudo-Riemannian homogeneous structures
[electronic resource] /by Giovanni Calvaruso, Marco Castrillon Lopez. - Cham :Springer International Publishing :2019. - xv, 230 p. :ill., digital ;24 cm. - Developments in mathematics,v.591389-2177 ;. - Developments in mathematics ;v.59..
1 G-structures, holonomy and homogeneous spaces -- 2 Ambrose-Singer connections and homogeneous spaces -- 3 Locally homogeneous pseudo-Riemannian manifolds -- 4 Classification of homogeneous structures -- 5 Homogeneous structures of linear type -- 6 Reduction of homogeneous structures -- 7 Where all this fails: non-reductive homogeneous pseudo-Riemannian manifolds -- Subject Index.
This book provides an up-to-date presentation of homogeneous pseudo-Riemannian structures, an essential tool in the study of pseudo-Riemannian homogeneous spaces. Benefiting from large symmetry groups, these spaces are of high interest in Geometry and Theoretical Physics. Since the seminal book by Tricerri and Vanhecke, the theory of homogeneous structures has been considerably developed and many applications have been found. The present work covers a gap in the literature of more than 35 years, presenting the latest contributions to the field in a modern geometric approach, with special focus on manifolds equipped with pseudo-Riemannian metrics. This unique reference on the topic will be of interest to researchers working in areas of mathematics where homogeneous spaces play an important role, such as Differential Geometry, Global Analysis, General Relativity, and Particle Physics.
ISBN: 9783030181529
Standard No.: 10.1007/978-3-030-18152-9doiSubjects--Topical Terms:
1533587
Semi-Riemannian geometry.
LC Class. No.: QA649 / .C35 2019
Dewey Class. No.: 516.362
Pseudo-Riemannian homogeneous structures
LDR
:02338nmm a2200337 a 4500
001
2243226
003
DE-He213
005
20200704053303.0
006
m d
007
cr nn 008maaau
008
211207s2019 sz s 0 eng d
020
$a
9783030181529
$q
(electronic bk.)
020
$a
9783030181512
$q
(paper)
024
7
$a
10.1007/978-3-030-18152-9
$2
doi
035
$a
978-3-030-18152-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA649
$b
.C35 2019
072
7
$a
PBMP
$2
bicssc
072
7
$a
MAT012030
$2
bisacsh
072
7
$a
PBMP
$2
thema
082
0 4
$a
516.362
$2
23
090
$a
QA649
$b
.C167 2019
100
1
$a
Calvaruso, Giovanni.
$3
3503166
245
1 0
$a
Pseudo-Riemannian homogeneous structures
$h
[electronic resource] /
$c
by Giovanni Calvaruso, Marco Castrillon Lopez.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
xv, 230 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Developments in mathematics,
$x
1389-2177 ;
$v
v.59
505
0
$a
1 G-structures, holonomy and homogeneous spaces -- 2 Ambrose-Singer connections and homogeneous spaces -- 3 Locally homogeneous pseudo-Riemannian manifolds -- 4 Classification of homogeneous structures -- 5 Homogeneous structures of linear type -- 6 Reduction of homogeneous structures -- 7 Where all this fails: non-reductive homogeneous pseudo-Riemannian manifolds -- Subject Index.
520
$a
This book provides an up-to-date presentation of homogeneous pseudo-Riemannian structures, an essential tool in the study of pseudo-Riemannian homogeneous spaces. Benefiting from large symmetry groups, these spaces are of high interest in Geometry and Theoretical Physics. Since the seminal book by Tricerri and Vanhecke, the theory of homogeneous structures has been considerably developed and many applications have been found. The present work covers a gap in the literature of more than 35 years, presenting the latest contributions to the field in a modern geometric approach, with special focus on manifolds equipped with pseudo-Riemannian metrics. This unique reference on the topic will be of interest to researchers working in areas of mathematics where homogeneous spaces play an important role, such as Differential Geometry, Global Analysis, General Relativity, and Particle Physics.
650
0
$a
Semi-Riemannian geometry.
$3
1533587
650
1 4
$a
Differential Geometry.
$3
891003
650
2 4
$a
Mathematical Applications in the Physical Sciences.
$3
1566152
650
2 4
$a
Global Analysis and Analysis on Manifolds.
$3
891107
650
2 4
$a
Topological Groups, Lie Groups.
$3
891005
700
1
$a
Castrillon Lopez, Marco.
$3
3503167
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Developments in mathematics ;
$v
v.59.
$3
3503168
856
4 0
$u
https://doi.org/10.1007/978-3-030-18152-9
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9404272
電子資源
11.線上閱覽_V
電子書
EB QA649 .C35 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入