Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Machine learning modeling for IoUT n...
~
Aziz El-Banna, Ahmad A.
Linked to FindBook
Google Book
Amazon
博客來
Machine learning modeling for IoUT networks = internet of underwater things /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Machine learning modeling for IoUT networks/ by Ahmad A. Aziz El-Banna, Kaishun Wu.
Reminder of title:
internet of underwater things /
Author:
Aziz El-Banna, Ahmad A.
other author:
Wu, Kaishun.
Published:
Cham :Springer International Publishing : : 2021.,
Description:
xii, 63 p. :ill. (some col.), digital ;24 cm.
[NT 15003449]:
Introduction -- Seawater's Key Physical Variables -- Opportunistic Transmission -- Localization and Positioning -- ML Modeling for Underwater Communication -- Open Challenges -- Conclusion.
Contained By:
Springer Nature eBook
Subject:
Machine learning. -
Online resource:
https://doi.org/10.1007/978-3-030-68567-6
ISBN:
9783030685676
Machine learning modeling for IoUT networks = internet of underwater things /
Aziz El-Banna, Ahmad A.
Machine learning modeling for IoUT networks
internet of underwater things /[electronic resource] :by Ahmad A. Aziz El-Banna, Kaishun Wu. - Cham :Springer International Publishing :2021. - xii, 63 p. :ill. (some col.), digital ;24 cm. - SpringerBriefs in computer science,2191-5768. - SpringerBriefs in computer science..
Introduction -- Seawater's Key Physical Variables -- Opportunistic Transmission -- Localization and Positioning -- ML Modeling for Underwater Communication -- Open Challenges -- Conclusion.
This book discusses how machine learning and the Internet of Things (IoT) are playing a part in smart control of underwater environments, known as Internet of Underwater Things (IoUT) The authors first present seawater's key physical variables and go on to discuss opportunistic transmission, localization and positioning, machine learning modeling for underwater communication, and ongoing challenges in the field. In addition, the authors present applications of machine learning techniques for opportunistic communication and underwater localization. They also discuss the current challenges of machine learning modeling of underwater communication from two communication engineering and data science perspectives.
ISBN: 9783030685676
Standard No.: 10.1007/978-3-030-68567-6doiSubjects--Topical Terms:
533906
Machine learning.
LC Class. No.: Q325.5 / .A95 2021
Dewey Class. No.: 006.31
Machine learning modeling for IoUT networks = internet of underwater things /
LDR
:01993nmm a2200337 a 4500
001
2240476
003
DE-He213
005
20210529191822.0
006
m d
007
cr nn 008maaau
008
211111s2021 sz s 0 eng d
020
$a
9783030685676
$q
(electronic bk.)
020
$a
9783030685669
$q
(paper)
024
7
$a
10.1007/978-3-030-68567-6
$2
doi
035
$a
978-3-030-68567-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
$b
.A95 2021
072
7
$a
TJK
$2
bicssc
072
7
$a
TEC041000
$2
bisacsh
072
7
$a
TJK
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.A995 2021
100
1
$a
Aziz El-Banna, Ahmad A.
$3
3495462
245
1 0
$a
Machine learning modeling for IoUT networks
$h
[electronic resource] :
$b
internet of underwater things /
$c
by Ahmad A. Aziz El-Banna, Kaishun Wu.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xii, 63 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in computer science,
$x
2191-5768
505
0
$a
Introduction -- Seawater's Key Physical Variables -- Opportunistic Transmission -- Localization and Positioning -- ML Modeling for Underwater Communication -- Open Challenges -- Conclusion.
520
$a
This book discusses how machine learning and the Internet of Things (IoT) are playing a part in smart control of underwater environments, known as Internet of Underwater Things (IoUT) The authors first present seawater's key physical variables and go on to discuss opportunistic transmission, localization and positioning, machine learning modeling for underwater communication, and ongoing challenges in the field. In addition, the authors present applications of machine learning techniques for opportunistic communication and underwater localization. They also discuss the current challenges of machine learning modeling of underwater communication from two communication engineering and data science perspectives.
650
0
$a
Machine learning.
$3
533906
650
0
$a
Internet of things.
$3
2057703
650
0
$a
Underwater acoustic telemetry.
$3
1097249
650
1 4
$a
Communications Engineering, Networks.
$3
891094
650
2 4
$a
Control, Robotics, Mechatronics.
$3
1002220
650
2 4
$a
Artificial Intelligence.
$3
769149
700
1
$a
Wu, Kaishun.
$3
2059213
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in computer science.
$3
1567571
856
4 0
$u
https://doi.org/10.1007/978-3-030-68567-6
950
$a
Computer Science (SpringerNature-11645)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9402361
電子資源
11.線上閱覽_V
電子書
EB Q325.5 .A95 2021
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login