語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Explainable neural networks based on...
~
Dombi, Jozsef.
FindBook
Google Book
Amazon
博客來
Explainable neural networks based on fuzzy logic and multi-criteria decision tools
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Explainable neural networks based on fuzzy logic and multi-criteria decision tools/ by Jozsef Dombi, Orsolya Csiszar.
作者:
Dombi, Jozsef.
其他作者:
Csiszar, Orsolya.
出版者:
Cham :Springer International Publishing : : 2021.,
面頁冊數:
xxi, 173 p. :ill. (some col.), digital ;24 cm.
內容註:
Chapter 1: Connectives: Conjunctions, Disjunctions and Negations -- Chapter 2: Implications -- Chapter 3: Equivalences -- Chapter 4: Modifiers and Membership Functions in Fuzzy Sets -- Chapter 5: Aggregative Operators -- Chapter 6: Preference Operators.
Contained By:
Springer Nature eBook
標題:
Neural networks (Computer science) -
電子資源:
https://doi.org/10.1007/978-3-030-72280-7
ISBN:
9783030722807
Explainable neural networks based on fuzzy logic and multi-criteria decision tools
Dombi, Jozsef.
Explainable neural networks based on fuzzy logic and multi-criteria decision tools
[electronic resource] /by Jozsef Dombi, Orsolya Csiszar. - Cham :Springer International Publishing :2021. - xxi, 173 p. :ill. (some col.), digital ;24 cm. - Studies in fuzziness and soft computing,v.4081434-9922 ;. - Studies in fuzziness and soft computing ;v.408..
Chapter 1: Connectives: Conjunctions, Disjunctions and Negations -- Chapter 2: Implications -- Chapter 3: Equivalences -- Chapter 4: Modifiers and Membership Functions in Fuzzy Sets -- Chapter 5: Aggregative Operators -- Chapter 6: Preference Operators.
The research presented in this book shows how combining deep neural networks with a special class of fuzzy logical rules and multi-criteria decision tools can make deep neural networks more interpretable - and even, in many cases, more efficient. Fuzzy logic together with multi-criteria decision-making tools provides very powerful tools for modeling human thinking. Based on their common theoretical basis, we propose a consistent framework for modeling human thinking by using the tools of all three fields: fuzzy logic, multi-criteria decision-making, and deep learning to help reduce the black-box nature of neural models; a challenge that is of vital importance to the whole research community.
ISBN: 9783030722807
Standard No.: 10.1007/978-3-030-72280-7doiSubjects--Topical Terms:
532070
Neural networks (Computer science)
LC Class. No.: QA76.87 / .D663 2021
Dewey Class. No.: 006.32
Explainable neural networks based on fuzzy logic and multi-criteria decision tools
LDR
:02081nmm a2200337 a 4500
001
2240024
003
DE-He213
005
20210729132325.0
006
m d
007
cr nn 008maaau
008
211111s2021 sz s 0 eng d
020
$a
9783030722807
$q
(electronic bk.)
020
$a
9783030722791
$q
(paper)
024
7
$a
10.1007/978-3-030-72280-7
$2
doi
035
$a
978-3-030-72280-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.87
$b
.D663 2021
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.32
$2
23
090
$a
QA76.87
$b
.D667 2021
100
1
$a
Dombi, Jozsef.
$3
3486304
245
1 0
$a
Explainable neural networks based on fuzzy logic and multi-criteria decision tools
$h
[electronic resource] /
$c
by Jozsef Dombi, Orsolya Csiszar.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xxi, 173 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Studies in fuzziness and soft computing,
$x
1434-9922 ;
$v
v.408
505
0
$a
Chapter 1: Connectives: Conjunctions, Disjunctions and Negations -- Chapter 2: Implications -- Chapter 3: Equivalences -- Chapter 4: Modifiers and Membership Functions in Fuzzy Sets -- Chapter 5: Aggregative Operators -- Chapter 6: Preference Operators.
520
$a
The research presented in this book shows how combining deep neural networks with a special class of fuzzy logical rules and multi-criteria decision tools can make deep neural networks more interpretable - and even, in many cases, more efficient. Fuzzy logic together with multi-criteria decision-making tools provides very powerful tools for modeling human thinking. Based on their common theoretical basis, we propose a consistent framework for modeling human thinking by using the tools of all three fields: fuzzy logic, multi-criteria decision-making, and deep learning to help reduce the black-box nature of neural models; a challenge that is of vital importance to the whole research community.
650
0
$a
Neural networks (Computer science)
$3
532070
650
0
$a
Fuzzy logic.
$3
532071
650
0
$a
Machine learning.
$3
533906
650
0
$a
Artificial intelligence.
$3
516317
650
1 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Artificial Intelligence.
$3
769149
650
2 4
$a
Complexity.
$3
893807
700
1
$a
Csiszar, Orsolya.
$3
3494611
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Studies in fuzziness and soft computing ;
$v
v.408.
$3
3494612
856
4 0
$u
https://doi.org/10.1007/978-3-030-72280-7
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9401909
電子資源
11.線上閱覽_V
電子書
EB QA76.87 .D663 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入