Unearthing the real process behind t...
Janssenswillen, Gert.

FindBook      Google Book      Amazon      博客來     
  • Unearthing the real process behind the event data = the case for increased process realism /
  • 紀錄類型: 書目-電子資源 : Monograph/item
    正題名/作者: Unearthing the real process behind the event data/ by Gert Janssenswillen.
    其他題名: the case for increased process realism /
    作者: Janssenswillen, Gert.
    出版者: Cham :Springer International Publishing : : 2021.,
    面頁冊數: xvi, 283 p. :ill., digital ;24 cm.
    內容註: Part I Introduction -- 1 Process Realism -- 1.1 Introduction to Process Mining -- 1.1.1 Business Process Management -- 1.1.2 The emergence of process mining -- 1.1.3 Perspectives -- 1.1.4 Tools -- 1.1.5 Towards Evidence-based Business Process Management -- 1.2 The case for Process Realism -- 1.2.1 Motivation -- 1.2.2 Research objective -- 1.3 Methodology and Outline -- 1.3.1 Process Model Quality -- 1.3.2 Process Analytics -- Part II Process Model Quality -- 2 Introduction to Conformance Checking -- 2.1 Introduction to Process Mining -- 2.1.1 Preliminaries -- 2.1.2 Process -- 2.1.3 Event log -- 2.1.4 Model -- 2.2 Quality Dimensions -- 2.2.1 Fitness -- 2.2.2 Precision -- 2.2.3 Generalization -- 2.2.4 Simplicity -- 2.3 Quality Measures -- 2.3.1 Fitness -- 2.3.2 Precision -- 2.3.3 Generalization -- 2.4 Conclusion -- 2.5 Further Reading -- 3 Calculating the Number of Distinct Paths in a Block-Structured Model -- 3.1 Introduction -- 3.2 Formal Algorithm -- 3.2.1 Assumptions and used notations -- 3.2.2 Generic approach -- 3.2.3 Block Functions -- 3.2.4 Limitations -- 3.3 Implementation -- 3.3.1 Preliminaries -- 3.3.2 Algorithm -- 3.3.3 Extended Block Functions -- 3.3.4 Silent transitions and duplicate tasks -- 3.4 Performance -- 3.5 Conclusion and future work -- 3.6 Further Reading -- 4 Comparative Study of Quality Measures -- 4.1 Introduction -- 4.2 Problem Statement -- 4.3 Methodology -- 4.3.1 Generate systems -- 4.3.2 Calculate the number of paths -- 4.3.3 Simulate logs -- 4.3.4 Discover models -- 4.3.5 Measure quality -- 4.3.6 Statistical Analysis -- 4.4 Results -- 4.4.1 Feasibility -- 4.4.2 Validity -- 4.4.3 Sensitivity -- 4.5 Discussion -- 4.6 Conclusion -- 4.7 Further Reading -- 5 Reassessing the Quality Framework -- 5.1 Introduction -- 5.2 Exploratory versus confirmatory process discovery -- 5.2.1 Problem statement -- 5.3 Methodology -- 5.3.1 Generate systems -- 5.3.2 Simulate logs -- 5.3.3 Discover models -- 5.3.4 Measure log-quality -- 5.3.5 Measure system-quality -- 5.3.6 Statistical analysis -- 5.4 Results -- 5.4.1 Log versus system-perspective -- 5.4.2 Generalization -- 5.5 Discussion -- 5.6 Conclusion -- 5.7 Further Reading -- 6 Towards Mature Conformance Checking -- 6.1 Synthesis -- 6.1.1 Fitness -- 6.1.2 Precision -- 6.1.3 Generalization -- 6.2 Future research -- 6.2.1 System-fitness and system-precision -- 6.2.2 Improving the Experimental Setup -- Part III Process Analytics -- 7 Reproducible Process Analytics -- 7.1 Introduction -- 7.2 Problem Statement -- 7.3 Requirements Definition -- 7.3.1 Functionality requirements -- 7.3.2 Design Requirements -- 7.4 Design and Development of Artefact -- 7.4.1 Core packages -- 7.4.2 Supplementary packages -- 7.5 Demonstration of Artefact -- 7.5.1 Event data extraction -- 7.5.2 Data Processing -- 7.5.3 Mining and Analysis -- 7.6 Discussion -- 7.7 Conclusion -- 7.8 Further Reading -- 8 Student Trajectories in Higher Education -- 8.1 Learning analytics and process mining -- 8.2 Data Understanding -- 8.3 Followed versus prescribed trajectories -- 8.3.1 Root causes -- 8.3.2 Impact -- 8.4 Failure Patterns -- 8.4.1 Bags -- 8.4.2 High-level analysis -- 8.4.3 Low-level analysis -- 8.5 Understanding Trajectory Decisions -- 8.6 Discussion -- 8.7 Conclusion -- 8.8 Further Reading -- 9 Process-Oriented Analytics in Railway Systems -- 9.1 Introduction -- 9.2 Problem statement and related work -- 9.3 Methodology -- 9.3.1 Rerouting severity -- 9.3.2 Rerouting diversity -- 9.3.3 Discovering patterns -- 9.4 Results -- 9.4.1 Rerouting severity -- 9.4.2 Rerouting diversity -- 5 Discussion -- 9.6 Conclusions -- 9.7 Further Reading -- Part IV Conclusions -- 10 Conclusions and Recommendations for Future Research -- 10.1 Process Model Quality -- 10.1.1 Lessons Learned -- 10.1.2 Recommendations for Future Research -- 10.2 Process Analytics -- 10.2.1 Lessons Learned -- 10.2.2 Recommendations for Future Research -- Afterword -- A Additional Figures and Tables Chapter 4 -- B Function Index bupaR packages -- B.1 bupaR -- B.2 edeaR -- B.3 evendataR -- B.4 xesreadR -- B.5 processmapR -- B.6 processmonitR -- B.7 petrinetR -- B.8 ptR -- B.9 discoveR -- C Scripts Chapter 8 -- D Scripts Chapter 9 -- References.
    Contained By: Springer Nature eBook
    標題: Business - Data processing. -
    電子資源: https://doi.org/10.1007/978-3-030-70733-0
    ISBN: 9783030707330
館藏地:  出版年:  卷號: 
館藏
  • 1 筆 • 頁數 1 •
 
W9401556 電子資源 11.線上閱覽_V 電子書 EB HF5548.2 .J35 2021 一般使用(Normal) 在架 0
  • 1 筆 • 頁數 1 •
多媒體
評論
Export
取書館
 
 
變更密碼
登入