Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Liouville-riemann-roch theorems on A...
~
Kha, Minh.
Linked to FindBook
Google Book
Amazon
博客來
Liouville-riemann-roch theorems on Abelian coverings
Record Type:
Electronic resources : Monograph/item
Title/Author:
Liouville-riemann-roch theorems on Abelian coverings/ by Minh Kha, Peter Kuchment.
Author:
Kha, Minh.
other author:
Kuchment, Peter.
Published:
Cham :Springer International Publishing : : 2021.,
Description:
xii, 96 p. :ill., digital ;24 cm.
[NT 15003449]:
Preliminaries -- The Main Results -- Proofs of the Main Results -- Specific Examples of Liouville-Riemann-Roch Theorems -- Auxiliary Statements and Proofs of Technical Lemmas -- Final Remarks and Conclusions.
Contained By:
Springer Nature eBook
Subject:
Differential equations, Elliptic. -
Online resource:
https://doi.org/10.1007/978-3-030-67428-1
ISBN:
9783030674281
Liouville-riemann-roch theorems on Abelian coverings
Kha, Minh.
Liouville-riemann-roch theorems on Abelian coverings
[electronic resource] /by Minh Kha, Peter Kuchment. - Cham :Springer International Publishing :2021. - xii, 96 p. :ill., digital ;24 cm. - Lecture notes in mathematics,v.22450075-8434 ;. - Lecture notes in mathematics ;v.2245..
Preliminaries -- The Main Results -- Proofs of the Main Results -- Specific Examples of Liouville-Riemann-Roch Theorems -- Auxiliary Statements and Proofs of Technical Lemmas -- Final Remarks and Conclusions.
This book is devoted to computing the index of elliptic PDEs on non-compact Riemannian manifolds in the presence of local singularities and zeros, as well as polynomial growth at infinity. The classical Riemann-Roch theorem and its generalizations to elliptic equations on bounded domains and compact manifolds, due to Maz'ya, Plameneskii, Nadirashvilli, Gromov and Shubin, account for the contribution to the index due to a divisor of zeros and singularities. On the other hand, the Liouville theorems of Avellaneda, Lin, Li, Moser, Struwe, Kuchment and Pinchover provide the index of periodic elliptic equations on abelian coverings of compact manifolds with polynomial growth at infinity, i.e. in the presence of a "divisor" at infinity. A natural question is whether one can combine the Riemann-Roch and Liouville type results. This monograph shows that this can indeed be done, however the answers are more intricate than one might initially expect. Namely, the interaction between the finite divisor and the point at infinity is non-trivial. The text is targeted towards researchers in PDEs, geometric analysis, and mathematical physics.
ISBN: 9783030674281
Standard No.: 10.1007/978-3-030-67428-1doiSubjects--Topical Terms:
541859
Differential equations, Elliptic.
LC Class. No.: QA377
Dewey Class. No.: 515.3533
Liouville-riemann-roch theorems on Abelian coverings
LDR
:02396nmm a2200337 a 4500
001
2238462
003
DE-He213
005
20210616164831.0
006
m d
007
cr nn 008maaau
008
211111s2021 sz s 0 eng d
020
$a
9783030674281
$q
(electronic bk.)
020
$a
9783030674274
$q
(paper)
024
7
$a
10.1007/978-3-030-67428-1
$2
doi
035
$a
978-3-030-67428-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA377
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
072
7
$a
PBKS
$2
thema
082
0 4
$a
515.3533
$2
23
090
$a
QA377
$b
.K45 2021
100
1
$a
Kha, Minh.
$3
3491643
245
1 0
$a
Liouville-riemann-roch theorems on Abelian coverings
$h
[electronic resource] /
$c
by Minh Kha, Peter Kuchment.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xii, 96 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
0075-8434 ;
$v
v.2245
505
0
$a
Preliminaries -- The Main Results -- Proofs of the Main Results -- Specific Examples of Liouville-Riemann-Roch Theorems -- Auxiliary Statements and Proofs of Technical Lemmas -- Final Remarks and Conclusions.
520
$a
This book is devoted to computing the index of elliptic PDEs on non-compact Riemannian manifolds in the presence of local singularities and zeros, as well as polynomial growth at infinity. The classical Riemann-Roch theorem and its generalizations to elliptic equations on bounded domains and compact manifolds, due to Maz'ya, Plameneskii, Nadirashvilli, Gromov and Shubin, account for the contribution to the index due to a divisor of zeros and singularities. On the other hand, the Liouville theorems of Avellaneda, Lin, Li, Moser, Struwe, Kuchment and Pinchover provide the index of periodic elliptic equations on abelian coverings of compact manifolds with polynomial growth at infinity, i.e. in the presence of a "divisor" at infinity. A natural question is whether one can combine the Riemann-Roch and Liouville type results. This monograph shows that this can indeed be done, however the answers are more intricate than one might initially expect. Namely, the interaction between the finite divisor and the point at infinity is non-trivial. The text is targeted towards researchers in PDEs, geometric analysis, and mathematical physics.
650
0
$a
Differential equations, Elliptic.
$3
541859
650
0
$a
Riemann-Roch theorems.
$3
706155
650
0
$a
Riemannian manifolds.
$3
540526
650
1 4
$a
Global Analysis and Analysis on Manifolds.
$3
891107
650
2 4
$a
Analysis.
$3
891106
650
2 4
$a
Topology.
$3
522026
700
1
$a
Kuchment, Peter.
$3
3491644
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in mathematics ;
$v
v.2245.
$3
3491645
856
4 0
$u
https://doi.org/10.1007/978-3-030-67428-1
950
$a
Mathematics and Statistics (SpringerNature-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9400347
電子資源
11.線上閱覽_V
電子書
EB QA377
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login