語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine learning for cyber physical ...
~
ML4CPS (Conference) (2020 :)
FindBook
Google Book
Amazon
博客來
Machine learning for cyber physical systems = selected papers from the International Conference ML4CPS 2020 /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Machine learning for cyber physical systems/ edited by Jurgen Beyerer, Alexander Maier, Oliver Niggemann.
其他題名:
selected papers from the International Conference ML4CPS 2020 /
其他題名:
ML4CPS 2020
其他作者:
Beyerer, Jurgen.
團體作者:
ML4CPS (Conference)
出版者:
Berlin, Heidelberg :Springer Berlin Heidelberg : : 2021.,
面頁冊數:
vii, 130 p. :ill., digital ;24 cm.
內容註:
Preface -- Energy Profile Prediction of Milling Processes Using Machine Learning Techniques -- Improvement of the prediction quality of electrical load profiles with artficial neural networks -- Detection and localization of an underwater docking station -- Deployment architecture for the local delivery of ML-Models to the industrial shop floor -- Deep Learning in Resource and Data Constrained Edge Computing Systems -- Prediction of Batch Processes Runtime Applying Dynamic Time Warping and Survival Analysis -- Proposal for requirements on industrial AI solutions -- Information modeling and knowledge extraction for machine learning applications in industrial production systems -- Explanation Framework for Intrusion Detection -- Automatic Generation of Improvement Suggestions for Legacy, PLC Controlled Manufacturing Equipment Utilizing Machine Learning -- Hardening Deep Neural Networks in Condition Monitoring Systems against Adversarial Example Attacks -- First Approaches to Automatically Diagnose and Reconfigure Hybrid Cyber-Physical Systems -- Machine learning for reconstruction of highly porous structures from FIB-SEM nano-tomographic data.
Contained By:
Springer Nature eBook
標題:
Machine learning - Congresses. -
電子資源:
https://doi.org/10.1007/978-3-662-62746-4
ISBN:
9783662627464
Machine learning for cyber physical systems = selected papers from the International Conference ML4CPS 2020 /
Machine learning for cyber physical systems
selected papers from the International Conference ML4CPS 2020 /[electronic resource] :ML4CPS 2020edited by Jurgen Beyerer, Alexander Maier, Oliver Niggemann. - Berlin, Heidelberg :Springer Berlin Heidelberg :2021. - vii, 130 p. :ill., digital ;24 cm. - Technologien fur die intelligente automation = Technologies for intelligent automation,Band 132522-8579 ;. - Technologien fur die intelligente automation ;Band 13..
Preface -- Energy Profile Prediction of Milling Processes Using Machine Learning Techniques -- Improvement of the prediction quality of electrical load profiles with artficial neural networks -- Detection and localization of an underwater docking station -- Deployment architecture for the local delivery of ML-Models to the industrial shop floor -- Deep Learning in Resource and Data Constrained Edge Computing Systems -- Prediction of Batch Processes Runtime Applying Dynamic Time Warping and Survival Analysis -- Proposal for requirements on industrial AI solutions -- Information modeling and knowledge extraction for machine learning applications in industrial production systems -- Explanation Framework for Intrusion Detection -- Automatic Generation of Improvement Suggestions for Legacy, PLC Controlled Manufacturing Equipment Utilizing Machine Learning -- Hardening Deep Neural Networks in Condition Monitoring Systems against Adversarial Example Attacks -- First Approaches to Automatically Diagnose and Reconfigure Hybrid Cyber-Physical Systems -- Machine learning for reconstruction of highly porous structures from FIB-SEM nano-tomographic data.
Open access.
ISBN: 9783662627464
Standard No.: 10.1007/978-3-662-62746-4doiSubjects--Topical Terms:
576368
Machine learning
--Congresses.
LC Class. No.: Q325.5
Dewey Class. No.: 006.31
Machine learning for cyber physical systems = selected papers from the International Conference ML4CPS 2020 /
LDR
:02418nmm a2200361 a 4500
001
2236893
003
DE-He213
005
20201223214316.0
006
m d
007
cr nn 008maaau
008
211111s2021 gw s 0 eng d
020
$a
9783662627464
$q
(electronic bk.)
020
$a
9783662627457
$q
(paper)
024
7
$a
10.1007/978-3-662-62746-4
$2
doi
035
$a
978-3-662-62746-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
THR
$2
bicssc
072
7
$a
TEC007000
$2
bisacsh
072
7
$a
THR
$2
thema
072
7
$a
GPFC
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.M685 2020
111
2
$a
ML4CPS (Conference)
$n
(5th :
$d
2020 :
$c
Berlin, Germany)
$3
3488642
245
1 0
$a
Machine learning for cyber physical systems
$h
[electronic resource] :
$b
selected papers from the International Conference ML4CPS 2020 /
$c
edited by Jurgen Beyerer, Alexander Maier, Oliver Niggemann.
246
3
$a
ML4CPS 2020
260
$a
Berlin, Heidelberg :
$b
Springer Berlin Heidelberg :
$b
Imprint: Springer Vieweg,
$c
2021.
300
$a
vii, 130 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Technologien fur die intelligente automation = Technologies for intelligent automation,
$x
2522-8579 ;
$v
Band 13
505
0
$a
Preface -- Energy Profile Prediction of Milling Processes Using Machine Learning Techniques -- Improvement of the prediction quality of electrical load profiles with artficial neural networks -- Detection and localization of an underwater docking station -- Deployment architecture for the local delivery of ML-Models to the industrial shop floor -- Deep Learning in Resource and Data Constrained Edge Computing Systems -- Prediction of Batch Processes Runtime Applying Dynamic Time Warping and Survival Analysis -- Proposal for requirements on industrial AI solutions -- Information modeling and knowledge extraction for machine learning applications in industrial production systems -- Explanation Framework for Intrusion Detection -- Automatic Generation of Improvement Suggestions for Legacy, PLC Controlled Manufacturing Equipment Utilizing Machine Learning -- Hardening Deep Neural Networks in Condition Monitoring Systems against Adversarial Example Attacks -- First Approaches to Automatically Diagnose and Reconfigure Hybrid Cyber-Physical Systems -- Machine learning for reconstruction of highly porous structures from FIB-SEM nano-tomographic data.
506
$a
Open access.
650
0
$a
Machine learning
$x
Congresses.
$3
576368
650
0
$a
Cooperating objects (Computer systems)
$v
Congresses.
$3
3218484
650
1 4
$a
Cyber-physical systems, IoT.
$3
3386699
650
2 4
$a
Communications Engineering, Networks.
$3
891094
650
2 4
$a
Computer Systems Organization and Communication Networks.
$3
891212
700
1
$a
Beyerer, Jurgen.
$3
2182965
700
1
$a
Maier, Alexander.
$3
3442838
700
1
$a
Niggemann, Oliver.
$3
2182964
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Technologien fur die intelligente automation ;
$v
Band 13.
$3
3488643
856
4 0
$u
https://doi.org/10.1007/978-3-662-62746-4
950
$a
Engineering (SpringerNature-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9398778
電子資源
11.線上閱覽_V
電子書
EB Q325.5
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入