語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Schur algebras and representation theory
~
Martin, Stuart, (1964-)
FindBook
Google Book
Amazon
博客來
Schur algebras and representation theory
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Schur algebras and representation theory/ Stuart Martin.
其他題名:
Schur Algebras & Representation Theory
作者:
Martin, Stuart,
出版者:
Cambridge :Cambridge University Press, : 1993.,
面頁冊數:
xv, 232 p. :ill., digital ;24 cm.
附註:
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
內容註:
1. Polynomial functions and combinatorics. 1.1. Introductory remarks. 1.2. Schur's thesis. 1.3. The polynomial algebra. 1.4. Combinatorics. 1.5. Character theory and weight spaces. 1.6. Irreducible objects in P[subscript K](n, r) -- 2. The Schur algebra. 2.1. Definition. 2.2. First properties. 2.3. The Schur algebra S[subscript K](n, r). 2.4. Bideterminants and codeterminants. 2.5. The Straightening Formula. 2.6. The Desarmenien matrix and independence -- 3. Representation theory of the Schur algebra. 3.1. Modules for [Alpha subscript r] and S[subscript r]. 3.2. Schur modules as induced modules. 3.3. Heredity chains. 3.4. Schur modules and Weyl modules. 3.5. Modular representation theory for Schur algebras -- 4. Schur functors and the symmetric group. 4.1. The Schur functor. 4.2. Applying the Schur functor. 4.3. Hom functors for quasi-hereditary algebras. 4.4. Decomposition numbers for G and [Gamma]. 4.5. [Delta]-[actual symbol not reproducible]-good filtrations. 4.6. Young modules -- 5. Block theory.
內容註:
5.1. Summary of block theory. 5.2. Return of the Hom functors. 5.3. Primitive blocks. 5.4. General blocks. 5.5. The finiteness theorem. 5.6. Examples -- 6. The q-Schur algebra. 6.1. Quantum matrix space. 6.2. The q-Schur algebra, first visit. 6.3. Weights and polynomial modules. 6.4. Characters and irreducible [Alpha subscript q](n)-modules. 6.5. R-forms for q-Schur algebras. 6.6. The q-Schur algebra, second visit -- 7. Representation theory of S[subscript q](n, r). 7.1. q-Weyl modules. 7.2. The q-determinant in [Alpha subscript q](n, r). 7.3. A quantum GL[subscript n]. 7.4. The category P[subscript q](n, r). 7.5. P[subscript q](n, r) is a highest weight category. 7.6. Representations of GL[subscript n](q) and the q-Young modules. 7.7. Conclusion -- Appendix: a review of algebraic groups -- A.1 Linear algebraic groups: definitions -- A.2 Examples of linear algebraic groups -- A.3 The weight lattice -- A.4 Root systems -- A.5 Weyl groups -- A.6 The affine Weyl group.
內容註:
A.7 Simple modules for reductive groups -- A.8 General linear group schemes.
標題:
Representations of groups. -
電子資源:
https://doi.org/10.1017/CBO9780511470899
ISBN:
9780511470899
Schur algebras and representation theory
Martin, Stuart,1964-
Schur algebras and representation theory
[electronic resource] /Schur Algebras & Representation TheoryStuart Martin. - Cambridge :Cambridge University Press,1993. - xv, 232 p. :ill., digital ;24 cm. - Cambridge tracts in mathematics ;112. - Cambridge tracts in mathematics ;112..
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
1. Polynomial functions and combinatorics. 1.1. Introductory remarks. 1.2. Schur's thesis. 1.3. The polynomial algebra. 1.4. Combinatorics. 1.5. Character theory and weight spaces. 1.6. Irreducible objects in P[subscript K](n, r) -- 2. The Schur algebra. 2.1. Definition. 2.2. First properties. 2.3. The Schur algebra S[subscript K](n, r). 2.4. Bideterminants and codeterminants. 2.5. The Straightening Formula. 2.6. The Desarmenien matrix and independence -- 3. Representation theory of the Schur algebra. 3.1. Modules for [Alpha subscript r] and S[subscript r]. 3.2. Schur modules as induced modules. 3.3. Heredity chains. 3.4. Schur modules and Weyl modules. 3.5. Modular representation theory for Schur algebras -- 4. Schur functors and the symmetric group. 4.1. The Schur functor. 4.2. Applying the Schur functor. 4.3. Hom functors for quasi-hereditary algebras. 4.4. Decomposition numbers for G and [Gamma]. 4.5. [Delta]-[actual symbol not reproducible]-good filtrations. 4.6. Young modules -- 5. Block theory.
The Schur algebra is an algebraic system providing a link between the representation theory of the symmetric and general linear groups (both finite and infinite). In the text Dr Martin gives a full, self-contained account of this algebra and these links, covering both the basic theory of Schur algebras and related areas. He discusses the usual representation-theoretic topics such as constructions of irreducible modules, the blocks containing them, their modular characters and the problem of computing decomposition numbers; moreover deeper properties such as the quasi-hereditariness of the Schur algebra are discussed. The opportunity is taken to give an account of quantum versions of Schur algebras and their relations with certain q-deformations of the coordinate rings of the general linear group. The approach is combinatorial where possible, making the presentation accessible to graduate students. This is the first comprehensive text in this important and active area of research; it will be of interest to all research workers in representation theory.
ISBN: 9780511470899Subjects--Topical Terms:
519598
Representations of groups.
LC Class. No.: QA176 / .M37 1993
Dewey Class. No.: 512.55
Schur algebras and representation theory
LDR
:04150nmm a2200325 a 4500
001
2227353
003
UkCbUP
005
20151005020621.0
006
m d
007
cr nn 008maaau
008
210414s1993 enk o 1 0 eng d
020
$a
9780511470899
$q
(electronic bk.)
020
$a
9780521415910
$q
(hardback)
020
$a
9780521100465
$q
(paperback)
035
$a
CR9780511470899
040
$a
UkCbUP
$b
eng
$c
UkCbUP
$d
GP
041
0
$a
eng
050
4
$a
QA176
$b
.M37 1993
082
0 4
$a
512.55
$2
20
090
$a
QA176
$b
.M379 1993
100
1
$a
Martin, Stuart,
$d
1964-
$3
667716
245
1 0
$a
Schur algebras and representation theory
$h
[electronic resource] /
$c
Stuart Martin.
246
3
$a
Schur Algebras & Representation Theory
260
$a
Cambridge :
$b
Cambridge University Press,
$c
1993.
300
$a
xv, 232 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Cambridge tracts in mathematics ;
$v
112
500
$a
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
505
0
$a
1. Polynomial functions and combinatorics. 1.1. Introductory remarks. 1.2. Schur's thesis. 1.3. The polynomial algebra. 1.4. Combinatorics. 1.5. Character theory and weight spaces. 1.6. Irreducible objects in P[subscript K](n, r) -- 2. The Schur algebra. 2.1. Definition. 2.2. First properties. 2.3. The Schur algebra S[subscript K](n, r). 2.4. Bideterminants and codeterminants. 2.5. The Straightening Formula. 2.6. The Desarmenien matrix and independence -- 3. Representation theory of the Schur algebra. 3.1. Modules for [Alpha subscript r] and S[subscript r]. 3.2. Schur modules as induced modules. 3.3. Heredity chains. 3.4. Schur modules and Weyl modules. 3.5. Modular representation theory for Schur algebras -- 4. Schur functors and the symmetric group. 4.1. The Schur functor. 4.2. Applying the Schur functor. 4.3. Hom functors for quasi-hereditary algebras. 4.4. Decomposition numbers for G and [Gamma]. 4.5. [Delta]-[actual symbol not reproducible]-good filtrations. 4.6. Young modules -- 5. Block theory.
505
0
$a
5.1. Summary of block theory. 5.2. Return of the Hom functors. 5.3. Primitive blocks. 5.4. General blocks. 5.5. The finiteness theorem. 5.6. Examples -- 6. The q-Schur algebra. 6.1. Quantum matrix space. 6.2. The q-Schur algebra, first visit. 6.3. Weights and polynomial modules. 6.4. Characters and irreducible [Alpha subscript q](n)-modules. 6.5. R-forms for q-Schur algebras. 6.6. The q-Schur algebra, second visit -- 7. Representation theory of S[subscript q](n, r). 7.1. q-Weyl modules. 7.2. The q-determinant in [Alpha subscript q](n, r). 7.3. A quantum GL[subscript n]. 7.4. The category P[subscript q](n, r). 7.5. P[subscript q](n, r) is a highest weight category. 7.6. Representations of GL[subscript n](q) and the q-Young modules. 7.7. Conclusion -- Appendix: a review of algebraic groups -- A.1 Linear algebraic groups: definitions -- A.2 Examples of linear algebraic groups -- A.3 The weight lattice -- A.4 Root systems -- A.5 Weyl groups -- A.6 The affine Weyl group.
505
0
$a
A.7 Simple modules for reductive groups -- A.8 General linear group schemes.
520
$a
The Schur algebra is an algebraic system providing a link between the representation theory of the symmetric and general linear groups (both finite and infinite). In the text Dr Martin gives a full, self-contained account of this algebra and these links, covering both the basic theory of Schur algebras and related areas. He discusses the usual representation-theoretic topics such as constructions of irreducible modules, the blocks containing them, their modular characters and the problem of computing decomposition numbers; moreover deeper properties such as the quasi-hereditariness of the Schur algebra are discussed. The opportunity is taken to give an account of quantum versions of Schur algebras and their relations with certain q-deformations of the coordinate rings of the general linear group. The approach is combinatorial where possible, making the presentation accessible to graduate students. This is the first comprehensive text in this important and active area of research; it will be of interest to all research workers in representation theory.
650
0
$a
Representations of groups.
$3
519598
650
0
$a
Representations of algebras.
$3
572480
830
0
$a
Cambridge tracts in mathematics ;
$v
112.
$3
3470710
856
4 0
$u
https://doi.org/10.1017/CBO9780511470899
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9396781
電子資源
11.線上閱覽_V
電子書
EB QA176 .M37 1993
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入