Schur algebras and representation theory
Martin, Stuart, (1964-)

Linked to FindBook      Google Book      Amazon      博客來     
  • Schur algebras and representation theory
  • Record Type: Electronic resources : Monograph/item
    Title/Author: Schur algebras and representation theory/ Stuart Martin.
    remainder title: Schur Algebras & Representation Theory
    Author: Martin, Stuart,
    Published: Cambridge :Cambridge University Press, : 1993.,
    Description: xv, 232 p. :ill., digital ;24 cm.
    Notes: Title from publisher's bibliographic system (viewed on 05 Oct 2015).
    [NT 15003449]: 1. Polynomial functions and combinatorics. 1.1. Introductory remarks. 1.2. Schur's thesis. 1.3. The polynomial algebra. 1.4. Combinatorics. 1.5. Character theory and weight spaces. 1.6. Irreducible objects in P[subscript K](n, r) -- 2. The Schur algebra. 2.1. Definition. 2.2. First properties. 2.3. The Schur algebra S[subscript K](n, r). 2.4. Bideterminants and codeterminants. 2.5. The Straightening Formula. 2.6. The Desarmenien matrix and independence -- 3. Representation theory of the Schur algebra. 3.1. Modules for [Alpha subscript r] and S[subscript r]. 3.2. Schur modules as induced modules. 3.3. Heredity chains. 3.4. Schur modules and Weyl modules. 3.5. Modular representation theory for Schur algebras -- 4. Schur functors and the symmetric group. 4.1. The Schur functor. 4.2. Applying the Schur functor. 4.3. Hom functors for quasi-hereditary algebras. 4.4. Decomposition numbers for G and [Gamma]. 4.5. [Delta]-[actual symbol not reproducible]-good filtrations. 4.6. Young modules -- 5. Block theory.
    [NT 15003449]: 5.1. Summary of block theory. 5.2. Return of the Hom functors. 5.3. Primitive blocks. 5.4. General blocks. 5.5. The finiteness theorem. 5.6. Examples -- 6. The q-Schur algebra. 6.1. Quantum matrix space. 6.2. The q-Schur algebra, first visit. 6.3. Weights and polynomial modules. 6.4. Characters and irreducible [Alpha subscript q](n)-modules. 6.5. R-forms for q-Schur algebras. 6.6. The q-Schur algebra, second visit -- 7. Representation theory of S[subscript q](n, r). 7.1. q-Weyl modules. 7.2. The q-determinant in [Alpha subscript q](n, r). 7.3. A quantum GL[subscript n]. 7.4. The category P[subscript q](n, r). 7.5. P[subscript q](n, r) is a highest weight category. 7.6. Representations of GL[subscript n](q) and the q-Young modules. 7.7. Conclusion -- Appendix: a review of algebraic groups -- A.1 Linear algebraic groups: definitions -- A.2 Examples of linear algebraic groups -- A.3 The weight lattice -- A.4 Root systems -- A.5 Weyl groups -- A.6 The affine Weyl group.
    [NT 15003449]: A.7 Simple modules for reductive groups -- A.8 General linear group schemes.
    Subject: Representations of groups. -
    Online resource: https://doi.org/10.1017/CBO9780511470899
    ISBN: 9780511470899
Location:  Year:  Volume Number: 
Items
  • 1 records • Pages 1 •
  • 1 records • Pages 1 •
Multimedia
Reviews
Export
pickup library
 
 
Change password
Login