語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Automorphic forms on SL2 (R)
~
Borel, Armand.
FindBook
Google Book
Amazon
博客來
Automorphic forms on SL2 (R)
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Automorphic forms on SL2 (R)/ Armand Borel.
作者:
Borel, Armand.
出版者:
Cambridge :Cambridge University Press, : 1997.,
面頁冊數:
x, 192 p. :ill., digital ;24 cm.
附註:
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
內容註:
Part I. Basic Material On SL2(R), Discrete Subgroups and the Upper-Half Plane: -- 1. Prerequisites and notation -- 2. Review of SL2(R), differential operators, convolution -- 3. Action of G on X, discrete subgroups of G, fundamental domains -- 4. The unit disc model -- Part II. Automorphic Forms and Cusp Forms: -- 5. Growth conditions, automorphic forms -- 6. Poincare series -- 7. Constant term:the fundamental estimate -- 8. Finite dimensionality of the space of automorphic forms of a given type -- 9. Convolution operators on cuspidal functions -- Part III. Eisenstein Series: -- 10. Definition and convergence of Eisenstein series -- 11. Analytic continuation of the Eisenstein series -- 12. Eisenstein series and automorphic forms orthogonal to cusp forms -- Part IV. Spectral Decomposition and Representations: -- 13. Spectral decomposition of L2(G\G)m with respect to C -- 14. Generalities on representations of G -- 15. Representations of SL2(R) -- 16. Spectral decomposition of L2(G\SL2(R)): the discrete spectrum -- 17. Spectral decomposition of L2(G\SL2(R)): the continuous spectrum -- 18. Concluding remarks.
標題:
Automorphic forms. -
電子資源:
https://doi.org/10.1017/CBO9780511896064
ISBN:
9780511896064
Automorphic forms on SL2 (R)
Borel, Armand.
Automorphic forms on SL2 (R)
[electronic resource] /Armand Borel. - Cambridge :Cambridge University Press,1997. - x, 192 p. :ill., digital ;24 cm. - Cambridge tracts in mathematics ;130. - Cambridge tracts in mathematics ;130..
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
Part I. Basic Material On SL2(R), Discrete Subgroups and the Upper-Half Plane: -- 1. Prerequisites and notation -- 2. Review of SL2(R), differential operators, convolution -- 3. Action of G on X, discrete subgroups of G, fundamental domains -- 4. The unit disc model -- Part II. Automorphic Forms and Cusp Forms: -- 5. Growth conditions, automorphic forms -- 6. Poincare series -- 7. Constant term:the fundamental estimate -- 8. Finite dimensionality of the space of automorphic forms of a given type -- 9. Convolution operators on cuspidal functions -- Part III. Eisenstein Series: -- 10. Definition and convergence of Eisenstein series -- 11. Analytic continuation of the Eisenstein series -- 12. Eisenstein series and automorphic forms orthogonal to cusp forms -- Part IV. Spectral Decomposition and Representations: -- 13. Spectral decomposition of L2(G\G)m with respect to C -- 14. Generalities on representations of G -- 15. Representations of SL2(R) -- 16. Spectral decomposition of L2(G\SL2(R)): the discrete spectrum -- 17. Spectral decomposition of L2(G\SL2(R)): the continuous spectrum -- 18. Concluding remarks.
This book provides an introduction to some aspects of the analytic theory of automorphic forms on G=SL2(R) or the upper-half plane X, with respect to a discrete subgroup G of G of finite covolume. The point of view is inspired by the theory of infinite dimensional unitary representations of G; this is introduced in the last sections, making this connection explicit. The topics treated include the construction of fundamental domains, the notion of automorphic form on G\G and its relationship with the classical automorphic forms on X, Poincare series, constant terms, cusp forms, finite dimensionality of the space of automorphic forms of a given type, compactness of certain convolution operators, Eisenstein series, unitary representations of G, and the spectral decomposition of L2 (G\G). The main prerequisites are some results in functional analysis (reviewed, with references) and some familiarity with the elementary theory of Lie groups and Lie algebras. Graduate students and researchers in analytic number theory will find much to interest them in this book.
ISBN: 9780511896064Subjects--Topical Terms:
576006
Automorphic forms.
LC Class. No.: QA331 / .B687 1997
Dewey Class. No.: 515.9
Automorphic forms on SL2 (R)
LDR
:03104nmm a2200289 a 4500
001
2227347
003
UkCbUP
005
20151005020621.0
006
m d
007
cr nn 008maaau
008
210414s1997 enk o 1 0 eng d
020
$a
9780511896064
$q
(electronic bk.)
020
$a
9780521580496
$q
(hardback)
020
$a
9780521072120
$q
(paperback)
035
$a
CR9780511896064
040
$a
UkCbUP
$b
eng
$c
UkCbUP
$d
GP
041
0
$a
eng
050
4
$a
QA331
$b
.B687 1997
082
0 4
$a
515.9
$2
21
090
$a
QA331
$b
.B731 1997
100
1
$a
Borel, Armand.
$3
638171
245
1 0
$a
Automorphic forms on SL2 (R)
$h
[electronic resource] /
$c
Armand Borel.
260
$a
Cambridge :
$b
Cambridge University Press,
$c
1997.
300
$a
x, 192 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Cambridge tracts in mathematics ;
$v
130
500
$a
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
505
0
$a
Part I. Basic Material On SL2(R), Discrete Subgroups and the Upper-Half Plane: -- 1. Prerequisites and notation -- 2. Review of SL2(R), differential operators, convolution -- 3. Action of G on X, discrete subgroups of G, fundamental domains -- 4. The unit disc model -- Part II. Automorphic Forms and Cusp Forms: -- 5. Growth conditions, automorphic forms -- 6. Poincare series -- 7. Constant term:the fundamental estimate -- 8. Finite dimensionality of the space of automorphic forms of a given type -- 9. Convolution operators on cuspidal functions -- Part III. Eisenstein Series: -- 10. Definition and convergence of Eisenstein series -- 11. Analytic continuation of the Eisenstein series -- 12. Eisenstein series and automorphic forms orthogonal to cusp forms -- Part IV. Spectral Decomposition and Representations: -- 13. Spectral decomposition of L2(G\G)m with respect to C -- 14. Generalities on representations of G -- 15. Representations of SL2(R) -- 16. Spectral decomposition of L2(G\SL2(R)): the discrete spectrum -- 17. Spectral decomposition of L2(G\SL2(R)): the continuous spectrum -- 18. Concluding remarks.
520
$a
This book provides an introduction to some aspects of the analytic theory of automorphic forms on G=SL2(R) or the upper-half plane X, with respect to a discrete subgroup G of G of finite covolume. The point of view is inspired by the theory of infinite dimensional unitary representations of G; this is introduced in the last sections, making this connection explicit. The topics treated include the construction of fundamental domains, the notion of automorphic form on G\G and its relationship with the classical automorphic forms on X, Poincare series, constant terms, cusp forms, finite dimensionality of the space of automorphic forms of a given type, compactness of certain convolution operators, Eisenstein series, unitary representations of G, and the spectral decomposition of L2 (G\G). The main prerequisites are some results in functional analysis (reviewed, with references) and some familiarity with the elementary theory of Lie groups and Lie algebras. Graduate students and researchers in analytic number theory will find much to interest them in this book.
650
0
$a
Automorphic forms.
$3
576006
830
0
$a
Cambridge tracts in mathematics ;
$v
130.
$3
3470702
856
4 0
$u
https://doi.org/10.1017/CBO9780511896064
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9396775
電子資源
11.線上閱覽_V
電子書
EB QA331 .B687 1997
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入