語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
From categories to homotopy theory
~
Richter, Birgit, (1971-)
FindBook
Google Book
Amazon
博客來
From categories to homotopy theory
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
From categories to homotopy theory/ Birgit Richter.
作者:
Richter, Birgit,
出版者:
Cambridge :Cambridge University Press, : 2020.,
面頁冊數:
x, 390 p. :ill., digital ;24 cm.
附註:
Title from publisher's bibliographic system (viewed on 06 Apr 2020).
內容註:
Basic notions in category theory -- Natural transformations and the Yoneda-Lemma -- (Co)limits -- Kan extensions -- Comma categories and the Grothendieck construction -- Monads and comonads -- Abelian categories -- Symmetric monoidal categories -- Enriched categories -- Simplicial objects -- The nerve and the classifying space of a small category -- A brief introduction to operads -- Classifying spaces of symmetric monoidal categories -- Approaches to iterated loop spaces via diagram categories -- Functor homology -- Homology and cohomology of small categories.
標題:
Categories (Mathematics) -
電子資源:
https://doi.org/10.1017/9781108855891
ISBN:
9781108855891
From categories to homotopy theory
Richter, Birgit,1971-
From categories to homotopy theory
[electronic resource] /Birgit Richter. - Cambridge :Cambridge University Press,2020. - x, 390 p. :ill., digital ;24 cm. - Cambridge studies in advanced mathematics ;188. - Cambridge studies in advanced mathematics ;188..
Title from publisher's bibliographic system (viewed on 06 Apr 2020).
Basic notions in category theory -- Natural transformations and the Yoneda-Lemma -- (Co)limits -- Kan extensions -- Comma categories and the Grothendieck construction -- Monads and comonads -- Abelian categories -- Symmetric monoidal categories -- Enriched categories -- Simplicial objects -- The nerve and the classifying space of a small category -- A brief introduction to operads -- Classifying spaces of symmetric monoidal categories -- Approaches to iterated loop spaces via diagram categories -- Functor homology -- Homology and cohomology of small categories.
Category theory provides structure for the mathematical world and is seen everywhere in modern mathematics. With this book, the author bridges the gap between pure category theory and its numerous applications in homotopy theory, providing the necessary background information to make the subject accessible to graduate students or researchers with a background in algebraic topology and algebra. The reader is first introduced to category theory, starting with basic definitions and concepts before progressing to more advanced themes. Concrete examples and exercises illustrate the topics, ranging from colimits to constructions such as the Day convolution product. Part II covers important applications of category theory, giving a thorough introduction to simplicial objects including an account of quasi-categories and Segal sets. Diagram categories play a central role throughout the book, giving rise to models of iterated loop spaces, and feature prominently in functor homology and homology of small categories.
ISBN: 9781108855891Subjects--Topical Terms:
525955
Categories (Mathematics)
LC Class. No.: QA169 / .R53 2020
Dewey Class. No.: 514.24
From categories to homotopy theory
LDR
:02467nmm a2200277 a 4500
001
2227270
003
UkCbUP
005
20200512234356.0
006
m d
007
cr nn 008maaau
008
210414s2020 enk o 1 0 eng d
020
$a
9781108855891
$q
(electronic bk.)
020
$a
9781108479622
$q
(hardback)
035
$a
CR9781108855891
040
$a
UkCbUP
$b
eng
$c
UkCbUP
$d
GP
041
0
$a
eng
050
4
$a
QA169
$b
.R53 2020
082
0 4
$a
514.24
$2
23
090
$a
QA169
$b
.R535 2020
100
1
$a
Richter, Birgit,
$d
1971-
$3
1305999
245
1 0
$a
From categories to homotopy theory
$h
[electronic resource] /
$c
Birgit Richter.
260
$a
Cambridge :
$b
Cambridge University Press,
$c
2020.
300
$a
x, 390 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Cambridge studies in advanced mathematics ;
$v
188
500
$a
Title from publisher's bibliographic system (viewed on 06 Apr 2020).
505
0
$a
Basic notions in category theory -- Natural transformations and the Yoneda-Lemma -- (Co)limits -- Kan extensions -- Comma categories and the Grothendieck construction -- Monads and comonads -- Abelian categories -- Symmetric monoidal categories -- Enriched categories -- Simplicial objects -- The nerve and the classifying space of a small category -- A brief introduction to operads -- Classifying spaces of symmetric monoidal categories -- Approaches to iterated loop spaces via diagram categories -- Functor homology -- Homology and cohomology of small categories.
520
$a
Category theory provides structure for the mathematical world and is seen everywhere in modern mathematics. With this book, the author bridges the gap between pure category theory and its numerous applications in homotopy theory, providing the necessary background information to make the subject accessible to graduate students or researchers with a background in algebraic topology and algebra. The reader is first introduced to category theory, starting with basic definitions and concepts before progressing to more advanced themes. Concrete examples and exercises illustrate the topics, ranging from colimits to constructions such as the Day convolution product. Part II covers important applications of category theory, giving a thorough introduction to simplicial objects including an account of quasi-categories and Segal sets. Diagram categories play a central role throughout the book, giving rise to models of iterated loop spaces, and feature prominently in functor homology and homology of small categories.
650
0
$a
Categories (Mathematics)
$3
525955
650
0
$a
Homotopy theory.
$3
604501
830
0
$a
Cambridge studies in advanced mathematics ;
$v
188.
$3
3469106
856
4 0
$u
https://doi.org/10.1017/9781108855891
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9396698
電子資源
11.線上閱覽_V
電子書
EB QA169 .R53 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入