語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
查詢
薦購
讀者園地
我的帳戶
說明
簡單查詢
進階查詢
圖書館推薦圖書
讀者推薦圖書(公開)
教師指定參考書
借閱排行榜
預約排行榜
分類瀏覽
展示書
專題書單RSS
個人資料
個人檢索策略
個人薦購
借閱紀錄/續借/預約
個人評論
個人書籤
東區互惠借書
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The theory of Hardy's Z-function
~
Ivic, A., (1949-)
FindBook
Google Book
Amazon
博客來
The theory of Hardy's Z-function
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
The theory of Hardy's Z-function/ Aleksandar Ivic, Univerzitet u Beogradu, Serbia.
作者:
Ivic, A.,
出版者:
Cambridge :Cambridge University Press, : 2013.,
面頁冊數:
xvii, 245 p. :ill., digital ;24 cm.
附註:
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
內容註:
Definition of (s), Z(t) and basic notions -- Zeros on the critical line -- Selberg class of L-functions -- Approximate functional equations for k(s) -- Derivatives of Z(t) -- Gram points -- Moments of Hardy's function -- Primitive of Hardy's function -- Mellin transforms of powers of Z(t) -- Further results on Mk(s) and Zk(s) -- On some problems involving Hardy's function.
標題:
Number theory. -
電子資源:
https://doi.org/10.1017/CBO9781139236973
ISBN:
9781139236973
The theory of Hardy's Z-function
Ivic, A.,1949-
The theory of Hardy's Z-function
[electronic resource] /Aleksandar Ivic, Univerzitet u Beogradu, Serbia. - Cambridge :Cambridge University Press,2013. - xvii, 245 p. :ill., digital ;24 cm. - Cambridge tracts in mathematics ;196. - Cambridge tracts in mathematics ;196..
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
Definition of (s), Z(t) and basic notions -- Zeros on the critical line -- Selberg class of L-functions -- Approximate functional equations for k(s) -- Derivatives of Z(t) -- Gram points -- Moments of Hardy's function -- Primitive of Hardy's function -- Mellin transforms of powers of Z(t) -- Further results on Mk(s) and Zk(s) -- On some problems involving Hardy's function.
Hardy's Z-function, related to the Riemann zeta-function ζ(s), was originally utilised by G. H. Hardy to show that ζ(s) has infinitely many zeros of the form ½+it. It is now amongst the most important functions of analytic number theory, and the Riemann hypothesis, that all complex zeros lie on the line ½+it, is perhaps one of the best known and most important open problems in mathematics. Today Hardy's function has many applications; among others it is used for extensive calculations regarding the zeros of ζ(s). This comprehensive account covers many aspects of Z(t), including the distribution of its zeros, Gram points, moments and Mellin transforms. It features an extensive bibliography and end-of-chapter notes containing comments, remarks and references. The book also provides many open problems to stimulate readers interested in further research.
ISBN: 9781139236973Subjects--Topical Terms:
515832
Number theory.
LC Class. No.: QA241 / .I83 2013
Dewey Class. No.: 512.7
The theory of Hardy's Z-function
LDR
:02147nmm a2200277 a 4500
001
2227231
003
UkCbUP
005
20151005020621.0
006
m d
007
cr nn 008maaau
008
210414s2013 enk o 1 0 eng d
020
$a
9781139236973
$q
(electronic bk.)
020
$a
9781107028838
$q
(hardback)
035
$a
CR9781139236973
040
$a
UkCbUP
$b
eng
$c
UkCbUP
$d
GP
041
0
$a
eng
050
4
$a
QA241
$b
.I83 2013
082
0 4
$a
512.7
$2
23
090
$a
QA241
$b
.I95 2013
100
1
$a
Ivic, A.,
$d
1949-
$3
3470543
245
1 4
$a
The theory of Hardy's Z-function
$h
[electronic resource] /
$c
Aleksandar Ivic, Univerzitet u Beogradu, Serbia.
260
$a
Cambridge :
$b
Cambridge University Press,
$c
2013.
300
$a
xvii, 245 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Cambridge tracts in mathematics ;
$v
196
500
$a
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
505
0
$a
Definition of (s), Z(t) and basic notions -- Zeros on the critical line -- Selberg class of L-functions -- Approximate functional equations for k(s) -- Derivatives of Z(t) -- Gram points -- Moments of Hardy's function -- Primitive of Hardy's function -- Mellin transforms of powers of Z(t) -- Further results on Mk(s) and Zk(s) -- On some problems involving Hardy's function.
520
$a
Hardy's Z-function, related to the Riemann zeta-function ζ(s), was originally utilised by G. H. Hardy to show that ζ(s) has infinitely many zeros of the form ½+it. It is now amongst the most important functions of analytic number theory, and the Riemann hypothesis, that all complex zeros lie on the line ½+it, is perhaps one of the best known and most important open problems in mathematics. Today Hardy's function has many applications; among others it is used for extensive calculations regarding the zeros of ζ(s). This comprehensive account covers many aspects of Z(t), including the distribution of its zeros, Gram points, moments and Mellin transforms. It features an extensive bibliography and end-of-chapter notes containing comments, remarks and references. The book also provides many open problems to stimulate readers interested in further research.
650
0
$a
Number theory.
$3
515832
830
0
$a
Cambridge tracts in mathematics ;
$v
196.
$3
3470544
856
4 0
$u
https://doi.org/10.1017/CBO9781139236973
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9396659
電子資源
11.線上閱覽_V
電子書
EB QA241 .I83 2013
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入