語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Non-homogeneous random walks = Lyapu...
~
Men'shikov, M. V.
FindBook
Google Book
Amazon
博客來
Non-homogeneous random walks = Lyapunov function methods for near-critical stochastic systems /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Non-homogeneous random walks/ Mikhail Menshikov, University of Durham, Serguei Popov, Universidade Estadual de Campinas, Brazil, Andrew Wade, University of Durham.
其他題名:
Lyapunov function methods for near-critical stochastic systems /
作者:
Men'shikov, M. V.
其他作者:
Popov, Serguei,
出版者:
Cambridge :Cambridge University Press, : 2017.,
面頁冊數:
xviii, 363 p. :ill., digital ;24 cm.
附註:
Title from publisher's bibliographic system (viewed on 28 Feb 2017).
標題:
Random walks (Mathematics) -
電子資源:
https://doi.org/10.1017/9781139208468
ISBN:
9781139208468
Non-homogeneous random walks = Lyapunov function methods for near-critical stochastic systems /
Men'shikov, M. V.
Non-homogeneous random walks
Lyapunov function methods for near-critical stochastic systems /[electronic resource] :Mikhail Menshikov, University of Durham, Serguei Popov, Universidade Estadual de Campinas, Brazil, Andrew Wade, University of Durham. - Cambridge :Cambridge University Press,2017. - xviii, 363 p. :ill., digital ;24 cm. - Cambridge tracts in mathematics ;209. - Cambridge tracts in mathematics ;209..
Title from publisher's bibliographic system (viewed on 28 Feb 2017).
Stochastic systems provide powerful abstract models for a variety of important real-life applications: for example, power supply, traffic flow, data transmission. They (and the real systems they model) are often subject to phase transitions, behaving in one way when a parameter is below a certain critical value, then switching behaviour as soon as that critical value is reached. In a real system, we do not necessarily have control over all the parameter values, so it is important to know how to find critical points and to understand system behaviour near these points. This book is a modern presentation of the 'semimartingale' or 'Lyapunov function' method applied to near-critical stochastic systems, exemplified by non-homogeneous random walks. Applications treat near-critical stochastic systems and range across modern probability theory from stochastic billiards models to interacting particle systems. Spatially non-homogeneous random walks are explored in depth, as they provide prototypical near-critical systems.
ISBN: 9781139208468Subjects--Topical Terms:
532102
Random walks (Mathematics)
LC Class. No.: QA274.73 / .M46 2017
Dewey Class. No.: 519.282
Non-homogeneous random walks = Lyapunov function methods for near-critical stochastic systems /
LDR
:02070nmm a2200265 a 4500
001
2227224
003
UkCbUP
005
20170308135427.0
006
m d
007
cr nn 008maaau
008
210414s2017 enk o 1 0 eng d
020
$a
9781139208468
$q
(electronic bk.)
020
$a
9781107026698
$q
(hardback)
035
$a
CR9781139208468
040
$a
UkCbUP
$b
eng
$c
UkCbUP
$d
GP
041
0
$a
eng
050
4
$a
QA274.73
$b
.M46 2017
082
0 4
$a
519.282
$2
23
090
$a
QA274.73
$b
.M548 2017
100
1
$a
Men'shikov, M. V.
$q
(Mikhail Vasil'evich)
$3
3470531
245
1 0
$a
Non-homogeneous random walks
$h
[electronic resource] :
$b
Lyapunov function methods for near-critical stochastic systems /
$c
Mikhail Menshikov, University of Durham, Serguei Popov, Universidade Estadual de Campinas, Brazil, Andrew Wade, University of Durham.
260
$a
Cambridge :
$b
Cambridge University Press,
$c
2017.
300
$a
xviii, 363 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Cambridge tracts in mathematics ;
$v
209
500
$a
Title from publisher's bibliographic system (viewed on 28 Feb 2017).
520
$a
Stochastic systems provide powerful abstract models for a variety of important real-life applications: for example, power supply, traffic flow, data transmission. They (and the real systems they model) are often subject to phase transitions, behaving in one way when a parameter is below a certain critical value, then switching behaviour as soon as that critical value is reached. In a real system, we do not necessarily have control over all the parameter values, so it is important to know how to find critical points and to understand system behaviour near these points. This book is a modern presentation of the 'semimartingale' or 'Lyapunov function' method applied to near-critical stochastic systems, exemplified by non-homogeneous random walks. Applications treat near-critical stochastic systems and range across modern probability theory from stochastic billiards models to interacting particle systems. Spatially non-homogeneous random walks are explored in depth, as they provide prototypical near-critical systems.
650
0
$a
Random walks (Mathematics)
$3
532102
650
0
$a
Stochastic processes.
$3
520663
700
1
$a
Popov, Serguei,
$d
1972-
$3
3470532
700
1
$a
Wade, Andrew
$q
(Andrew R.),
$d
1981-
$3
3470533
830
0
$a
Cambridge tracts in mathematics ;
$v
209.
$3
3470534
856
4 0
$u
https://doi.org/10.1017/9781139208468
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9396652
電子資源
11.線上閱覽_V
電子書
EB QA274.73 .M46 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入