Fractal and trans-scale nature of en...
Conde, Diogo Queiros,

Linked to FindBook      Google Book      Amazon      博客來     
  • Fractal and trans-scale nature of entropy = towards a geometrization of thermodynamics /
  • Record Type: Electronic resources : Monograph/item
    Title/Author: Fractal and trans-scale nature of entropy/ Diogo Queiros Conde, Michel Feidt.
    Reminder of title: towards a geometrization of thermodynamics /
    Author: Conde, Diogo Queiros,
    other author: Feidt, Michel,
    Published: Amsterdam :Elsevier, : 2018.,
    Description: 1 online resource :ill. (some col.)
    [NT 15003449]: Front Cover; Fractal and Trans-scale Nature of Entropy: Towards a Geometrization of Thermodynamics; Copyright; Contents; Introduction; Chapter 1. The Thermal Worm Model to Represent Entropy-Exergy Duality; 1.1. A fractal and diffusive approach to entropy and exergy; 1.2. A granular model of energy: toward the entropy and the exergy of a curve; 1.3. The thermal worm model of entropy-exergy duality; 1.4. The 2D worm model; 1.5. The 3D thermal worm-like model; Chapter 2. Black Hole Entropy and the Thermal Worm Model; 2.1. Entropy of a black hole: the Bekenstein-Hawking temperature
    [NT 15003449]: 2.2. The thermal worm model of black holes2.3. Carnot representation of black holes; Chapter 3. The Entropic Skins of Black-Body Radiation: a Geometrical Theory of Radiation; 3.1. Intermittency of black-body radiation; 3.2. Generalized RJ law based on a scale-dependent fractal geometry; 3.3. Fluctuations and energy dispersion in black-body radiation; 3.4. A scale-entropy diffusion equation for black-body radiation; 3.5. Spectral fractal dimensions and scale-entropy of black-body radiation; 3.6. Conclusion; Chapter 4. Non-extensive Thermodynamics, Fractal Geometry and Scale-entropy
    [NT 15003449]: 4.1. Tsallis entropy in non-extensive thermostatistics4.2. Two physical systems leading to Tsallis entropy: a simple interpretation of the entropic index; 4.3. Non-extensive thermostatistics, scale-dependent fractality and Kaniadakis entropy; Chapter 5. Finite Physical Dimensions Thermodynamics; 5.1. A brief history of finite physical dimensions thermodynamics; 5.2. Transfer phenomena by FPDT; 5.3. Energy conversion by FPDT; 5.4. Extension to complex systems: cascades of endoreversible Carnot engines; 5.5. Time dynamics of Carnot engines; 5.6. Conclusions on FPDT
    [NT 15003449]: Chapter 6. A Scale-Dependent Fractal and Intermittent Structure to Describe Chemical Potential and Matter Diffusion6.1. Defining and quantifying the diffusion of matter through chemical potential; 6.2. Topic scales and scale-entropy of a set of particles; 6.3. Entropy and chemical potential of an ideal gas by Sackur-Tetrode theory; 6.4. Entropy of a set of particles described through topic scales and scale-entropy; 6.5. Fractal and scale-dependent fractal geometries to interpret and calculate the chemical potential
    [NT 15003449]: 6.6. The intermittency parameter and clustering entropy of particles in the fractal case6.7. The clustering entropy and chemical potential in the parabolic fractal case; 6.8. Summing up formulas and conclusion; Conclusion; Untitled; References; Index; Back Cover
    Subject: Thermodynamics. -
    Online resource: https://www.sciencedirect.com/science/book/9781785481932
    ISBN: 9780081017906 (electronic bk.)
Location:  Year:  Volume Number: 
Items
  • 1 records • Pages 1 •
  • 1 records • Pages 1 •
Multimedia
Reviews
Export
pickup library
 
 
Change password
Login