語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Traffic anomaly detection
~
Cua-Sánchez, Antonio,
FindBook
Google Book
Amazon
博客來
Traffic anomaly detection
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Traffic anomaly detection/ Antonio Cua-Sánchez, Javier Aracil.
作者:
Cua-Sánchez, Antonio,
其他作者:
Aracil, Javier,
出版者:
London, UK :ISTE, Ltd. ; : 2015.,
面頁冊數:
1 online resource :ill.
內容註:
Front Cover -- Traffic Anomaly Detection -- Copyright -- Contents -- Introduction
內容註:
Chapter 1: Introduction to Traffic Anomaly Detection Methods 1.1. Cumulative Sum Control Charts (CUSUM) -- 1.2. Tests of Goodness-of-fit -- 1.3. Mutual Information (MI)
內容註:
Chapter 2: Finding the Optimal Aggregation Period 2.1. Introduction -- 2.2. State of the Art
內容註:
2.3. Macroscopic Observation of Traffic 2.4. Average-Day Analysis -- 2.5. Conclusion -- Chapter 3: Comparative Analysis of Traffic Anomaly Detection Methods
內容註:
3.1. Introduction 3.2. State of the Art -- 3.3. Average-Day Preliminary Analysis -- 3.4. Proposed Change Point Detection Algorithms
標題:
Signal detection - Statistical methods. -
電子資源:
https://www.sciencedirect.com/science/book/9781785480126
ISBN:
9780081008072 (electronic bk.)
Traffic anomaly detection
Cua-Sánchez, Antonio,
Traffic anomaly detection
[electronic resource] /Antonio Cua-Sánchez, Javier Aracil. - London, UK :ISTE, Ltd. ;2015. - 1 online resource :ill.
Includes bibliographical references and index.
Front Cover -- Traffic Anomaly Detection -- Copyright -- Contents -- Introduction
This book presents an overview of traffic anomaly detection analysis, allowing you to monitor security aspects of multimedia services. The author's approach is based on the analysis of time aggregation adjacent periods of the traffic. As traffic varies throughout the day, it is essential to consider the concrete traffic period in which the anomaly occurs. This book presents the algorithms proposed specifically for this analysis and an empirical comparative analysis of those methods and settle a new information theory based technique, named "typical day analysis."
ISBN: 9780081008072 (electronic bk.)Subjects--Topical Terms:
3462812
Signal detection
--Statistical methods.Index Terms--Genre/Form:
542853
Electronic books.
LC Class. No.: TK5102.5
Dewey Class. No.: 621.3822
Traffic anomaly detection
LDR
:02312cmm a2200313 a 4500
001
2223403
006
o d
007
cnu|unuuu||
008
210114s2015 enka ob 001 0 eng d
020
$a
9780081008072 (electronic bk.)
020
$a
0081008074 (electronic bk.)
020
$a
9781785480126
035
$a
(OCoLC)927438026
035
$a
EL2020133
040
$a
N$T
$b
eng
$c
N$T
$d
N$T
$d
IDEBK
$d
OCLCO
$d
BTCTA
$d
YDXCP
$d
CDX
$d
EBLCP
$d
OCLCO
$d
OCLCF
$d
OCLCO
$d
OPELS
$d
OCLCO
$d
UIU
$d
MERUC
$d
IDB
$d
VGM
$d
OCLCQ
$d
U3W
$d
WRM
$d
D6H
$d
CEF
$d
EZ9
$d
OCLCQ
$d
AU@
$d
OCLCQ
041
0
$a
eng
050
4
$a
TK5102.5
082
0 4
$a
621.3822
$2
23
100
1
$a
Cua-Sánchez, Antonio,
$e
author.
$3
3462810
245
1 0
$a
Traffic anomaly detection
$h
[electronic resource] /
$c
Antonio Cua-Sánchez, Javier Aracil.
260
$a
London, UK :
$b
ISTE, Ltd. ;
$a
Kidlington, Oxford, UK :
$b
Elsevier,
$c
2015.
300
$a
1 online resource :
$b
ill.
504
$a
Includes bibliographical references and index.
505
0
$a
Front Cover -- Traffic Anomaly Detection -- Copyright -- Contents -- Introduction
505
8
$a
Chapter 1: Introduction to Traffic Anomaly Detection Methods 1.1. Cumulative Sum Control Charts (CUSUM) -- 1.2. Tests of Goodness-of-fit -- 1.3. Mutual Information (MI)
505
8
$a
Chapter 2: Finding the Optimal Aggregation Period 2.1. Introduction -- 2.2. State of the Art
505
8
$a
2.3. Macroscopic Observation of Traffic 2.4. Average-Day Analysis -- 2.5. Conclusion -- Chapter 3: Comparative Analysis of Traffic Anomaly Detection Methods
505
8
$a
3.1. Introduction 3.2. State of the Art -- 3.3. Average-Day Preliminary Analysis -- 3.4. Proposed Change Point Detection Algorithms
520
$a
This book presents an overview of traffic anomaly detection analysis, allowing you to monitor security aspects of multimedia services. The author's approach is based on the analysis of time aggregation adjacent periods of the traffic. As traffic varies throughout the day, it is essential to consider the concrete traffic period in which the anomaly occurs. This book presents the algorithms proposed specifically for this analysis and an empirical comparative analysis of those methods and settle a new information theory based technique, named "typical day analysis."
588
0
$a
Online resource; title from PDF title page (EBSCO, viewed November 5, 2015).
650
0
$a
Signal detection
$x
Statistical methods.
$3
3462812
650
0
$a
Signal detection
$x
Mathematical models.
$3
3462813
650
0
$a
Signal processing
$x
Statistical methods.
$3
649787
650
0
$a
Signal processing
$x
Mathematical models.
$3
678506
650
0
$a
Computer networks.
$3
539554
655
4
$a
Electronic books.
$2
lcsh
$3
542853
700
1
$a
Aracil, Javier,
$e
author.
$3
3462811
856
4 0
$u
https://www.sciencedirect.com/science/book/9781785480126
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9395934
電子資源
11.線上閱覽_V
電子書
EB TK5102.5
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入