Quantification of uncertainty = impr...
International Workshop "Quantification of Uncertainty: Improving Efficiency and Technology" ((2017 :)

Linked to FindBook      Google Book      Amazon      博客來     
  • Quantification of uncertainty = improving efficiency and technology : QUIET selected contributions /
  • Record Type: Electronic resources : Monograph/item
    Title/Author: Quantification of uncertainty/ edited by Marta D'Elia, Max Gunzburger, Gianluigi Rozza.
    Reminder of title: improving efficiency and technology : QUIET selected contributions /
    remainder title: QUIET 2017
    other author: D'Elia, Marta.
    corporate name: International Workshop "Quantification of Uncertainty: Improving Efficiency and Technology"
    Published: Cham :Springer International Publishing : : 2020.,
    Description: xi, 282 p. :ill., digital ;24 cm.
    [NT 15003449]: 1. Adeli, E. et al., Effect of Load Path on Parameter Identification for Plasticity Models using Bayesian Methods -- 2. Brugiapaglia S., A compressive spectral collocation method for the diffusion equation under the restricted isometry property -- 3. D'Elia, M. et al., Surrogate-based Ensemble Grouping Strategies for Embedded Sampling-based Uncertainty Quantification -- 4. Afkham, B.M. et al., Conservative Model Order Reduction for Fluid Flow -- 5. Clark C.L. and Winter C.L., A Semi-Markov Model of Mass Transport through Highly Heterogeneous Conductivity Fields -- 6. Matthies, H.G., Analysis of Probabilistic and Parametric Reduced Order Models -- 7. Carraturo, M. et al., Reduced Order Isogeometric Analysis Approach for PDEs in Parametrized Domains -- 8. Boccadifuoco, A. et al., Uncertainty quantification applied to hemodynamic simulations of thoracic aorta aneurysms: sensitivity to inlet conditions -- 9. Anderlini, A.et al., Cavitation model parameter calibration for simulations of three-phase injector flows -- 10. Hijazi, S. et al., Non-Intrusive Polynomial Chaos Method Applied to Full-Order and Reduced Problems in Computational Fluid Dynamics: a Comparison and Perspectives -- 11. Bulte, M. et al., A practical example for the non-linear Bayesian filtering of model parameters.
    Contained By: Springer Nature eBook
    Subject: Uncertainty (Information theory) - Congresses. - Mathematical models -
    Online resource: https://doi.org/10.1007/978-3-030-48721-8
    ISBN: 9783030487218
Location:  Year:  Volume Number: 
Items
  • 1 records • Pages 1 •
  • 1 records • Pages 1 •
Multimedia
Reviews
Export
pickup library
 
 
Change password
Login