語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Analytical methods in statistics = A...
~
AMISTAT (Workshop) (2019 :)
FindBook
Google Book
Amazon
博客來
Analytical methods in statistics = AMISTAT, Liberec, Czech Republic, September 2019 /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Analytical methods in statistics/ edited by Matus Maciak, Michal Pesta, Martin Schindler.
其他題名:
AMISTAT, Liberec, Czech Republic, September 2019 /
其他作者:
Maciak, Matus.
團體作者:
AMISTAT (Workshop)
出版者:
Cham :Springer International Publishing : : 2020.,
面頁冊數:
x, 156 p. :ill., digital ;24 cm.
內容註:
Preface -- Y. Guney, J. Jureckova and O. Arslan, Averaged Autoregression Quantiles in Autoregressive Model -- J. Kalina and P. Vidnerova, Regression Neural Networks with a Highly Robust Loss Function -- H. L. Koul and P. Geng, Weighted Empirical Minimum Distance Estimators in Berkson Measurement Error Regression Models -- M. Maciak, M. Pesta and S. Vitali, Implied Volatility Surface Estimation via Quantile Regularization -- I. Mizera, A remark on the Grenander estimator -- U. Radojicic and K. Nordhausen, Non-Gaussian Component Analysis: Testing the Dimension of the Signal Subspace -- P. Vidnerova, J. Kalina and Y. Guney, A Comparison of Robust Model Choice Criteria within a Metalearning Study -- S. Zwanzig and R. Ahmad, On Parameter Estimation for High Dimensional Errors-in-Variables Models.
Contained By:
Springer Nature eBook
標題:
Mathematical statistics - Congresses. -
電子資源:
https://doi.org/10.1007/978-3-030-48814-7
ISBN:
9783030488147
Analytical methods in statistics = AMISTAT, Liberec, Czech Republic, September 2019 /
Analytical methods in statistics
AMISTAT, Liberec, Czech Republic, September 2019 /[electronic resource] :edited by Matus Maciak, Michal Pesta, Martin Schindler. - Cham :Springer International Publishing :2020. - x, 156 p. :ill., digital ;24 cm. - Springer proceedings in mathematics & statistics,v.3292194-1009 ;. - Springer proceedings in mathematics & statistics ;v.329..
Preface -- Y. Guney, J. Jureckova and O. Arslan, Averaged Autoregression Quantiles in Autoregressive Model -- J. Kalina and P. Vidnerova, Regression Neural Networks with a Highly Robust Loss Function -- H. L. Koul and P. Geng, Weighted Empirical Minimum Distance Estimators in Berkson Measurement Error Regression Models -- M. Maciak, M. Pesta and S. Vitali, Implied Volatility Surface Estimation via Quantile Regularization -- I. Mizera, A remark on the Grenander estimator -- U. Radojicic and K. Nordhausen, Non-Gaussian Component Analysis: Testing the Dimension of the Signal Subspace -- P. Vidnerova, J. Kalina and Y. Guney, A Comparison of Robust Model Choice Criteria within a Metalearning Study -- S. Zwanzig and R. Ahmad, On Parameter Estimation for High Dimensional Errors-in-Variables Models.
This book collects peer-reviewed contributions on modern statistical methods and topics, stemming from the third workshop on Analytical Methods in Statistics, AMISTAT 2019, held in Liberec, Czech Republic, on September 16-19, 2019. Real-life problems demand statistical solutions, which in turn require new and profound mathematical methods. As such, the book is not only a collection of solved problems but also a source of new methods and their practical extensions. The authoritative contributions focus on analytical methods in statistics, asymptotics, estimation and Fisher information, robustness, stochastic models and inequalities, and other related fields; further, they address e.g. average autoregression quantiles, neural networks, weighted empirical minimum distance estimators, implied volatility surface estimation, the Grenander estimator, non-Gaussian component analysis, meta learning, and high-dimensional errors-in-variables models.
ISBN: 9783030488147
Standard No.: 10.1007/978-3-030-48814-7doiSubjects--Topical Terms:
543180
Mathematical statistics
--Congresses.
LC Class. No.: QA276.A1 / A535 2019
Dewey Class. No.: 519.5
Analytical methods in statistics = AMISTAT, Liberec, Czech Republic, September 2019 /
LDR
:02888nmm a2200337 a 4500
001
2222669
003
DE-He213
005
20201123114932.0
006
m d
007
cr nn 008maaau
008
210108s2020 sz s 0 eng d
020
$a
9783030488147
$q
(electronic bk.)
020
$a
9783030488130
$q
(paper)
024
7
$a
10.1007/978-3-030-48814-7
$2
doi
035
$a
978-3-030-48814-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA276.A1
$b
A535 2019
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
082
0 4
$a
519.5
$2
23
090
$a
QA276.A1
$b
A517 2019
111
2
$a
AMISTAT (Workshop)
$n
(3rd :
$d
2019 :
$c
Liberec, Czech Republic)
$3
3461628
245
1 0
$a
Analytical methods in statistics
$h
[electronic resource] :
$b
AMISTAT, Liberec, Czech Republic, September 2019 /
$c
edited by Matus Maciak, Michal Pesta, Martin Schindler.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
x, 156 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer proceedings in mathematics & statistics,
$x
2194-1009 ;
$v
v.329
505
0
$a
Preface -- Y. Guney, J. Jureckova and O. Arslan, Averaged Autoregression Quantiles in Autoregressive Model -- J. Kalina and P. Vidnerova, Regression Neural Networks with a Highly Robust Loss Function -- H. L. Koul and P. Geng, Weighted Empirical Minimum Distance Estimators in Berkson Measurement Error Regression Models -- M. Maciak, M. Pesta and S. Vitali, Implied Volatility Surface Estimation via Quantile Regularization -- I. Mizera, A remark on the Grenander estimator -- U. Radojicic and K. Nordhausen, Non-Gaussian Component Analysis: Testing the Dimension of the Signal Subspace -- P. Vidnerova, J. Kalina and Y. Guney, A Comparison of Robust Model Choice Criteria within a Metalearning Study -- S. Zwanzig and R. Ahmad, On Parameter Estimation for High Dimensional Errors-in-Variables Models.
520
$a
This book collects peer-reviewed contributions on modern statistical methods and topics, stemming from the third workshop on Analytical Methods in Statistics, AMISTAT 2019, held in Liberec, Czech Republic, on September 16-19, 2019. Real-life problems demand statistical solutions, which in turn require new and profound mathematical methods. As such, the book is not only a collection of solved problems but also a source of new methods and their practical extensions. The authoritative contributions focus on analytical methods in statistics, asymptotics, estimation and Fisher information, robustness, stochastic models and inequalities, and other related fields; further, they address e.g. average autoregression quantiles, neural networks, weighted empirical minimum distance estimators, implied volatility surface estimation, the Grenander estimator, non-Gaussian component analysis, meta learning, and high-dimensional errors-in-variables models.
650
0
$a
Mathematical statistics
$v
Congresses.
$3
543180
650
1 4
$a
Statistical Theory and Methods.
$3
891074
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
891080
650
2 4
$a
Applications of Mathematics.
$3
890893
650
2 4
$a
Statistics and Computing/Statistics Programs.
$3
894293
650
2 4
$a
Applied Statistics.
$3
3300946
700
1
$a
Maciak, Matus.
$3
3461629
700
1
$a
Pesta, Michal.
$3
3461630
700
1
$a
Schindler, Martin.
$3
3461631
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Springer proceedings in mathematics & statistics ;
$v
v.329.
$3
3461632
856
4 0
$u
https://doi.org/10.1007/978-3-030-48814-7
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9395544
電子資源
11.線上閱覽_V
電子書
EB QA276.A1 A535 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入