Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Advanced linear modeling = statistic...
~
Christensen, Ronald.
Linked to FindBook
Google Book
Amazon
博客來
Advanced linear modeling = statistical learning and dependent data /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Advanced linear modeling/ by Ronald Christensen.
Reminder of title:
statistical learning and dependent data /
Author:
Christensen, Ronald.
Published:
Cham :Springer International Publishing : : 2019.,
Description:
xxiii, 608 p. :ill., digital ;24 cm.
[NT 15003449]:
1. Nonparametric Regression -- 2. Penalized Estimation -- 3. Reproducing Kernel Hilbert Spaces -- 4. Covariance Parameter Estimation -- 5. Mixed Models and Variance Components -- 6. Frequency Analysis of Time Series -- 7. Time Domain Analysis -- 8. Linear Models for Spacial Data: Kriging -- 9. Multivariate Linear Models: General. 10. Multivariate Linear Models: Applications -- 11. Generalized Multivariate Linear Models and Longitudinal Data -- 12. Discrimination and Allocation -- 13. Binary Discrimination and Regression -- 14. Principal Components, Classical Multidimensional Scaling, and Factor Analysis -- A Mathematical Background -- B Best Linear Predictors -- C Residual Maximum Likelihood -- Index -- Author Index.
Contained By:
Springer eBooks
Subject:
Linear models (Statistics) -
Online resource:
https://doi.org/10.1007/978-3-030-29164-8
ISBN:
9783030291648
Advanced linear modeling = statistical learning and dependent data /
Christensen, Ronald.
Advanced linear modeling
statistical learning and dependent data /[electronic resource] :by Ronald Christensen. - 3rd ed. - Cham :Springer International Publishing :2019. - xxiii, 608 p. :ill., digital ;24 cm. - Springer texts in statistics,1431-875X. - Springer texts in statistics..
1. Nonparametric Regression -- 2. Penalized Estimation -- 3. Reproducing Kernel Hilbert Spaces -- 4. Covariance Parameter Estimation -- 5. Mixed Models and Variance Components -- 6. Frequency Analysis of Time Series -- 7. Time Domain Analysis -- 8. Linear Models for Spacial Data: Kriging -- 9. Multivariate Linear Models: General. 10. Multivariate Linear Models: Applications -- 11. Generalized Multivariate Linear Models and Longitudinal Data -- 12. Discrimination and Allocation -- 13. Binary Discrimination and Regression -- 14. Principal Components, Classical Multidimensional Scaling, and Factor Analysis -- A Mathematical Background -- B Best Linear Predictors -- C Residual Maximum Likelihood -- Index -- Author Index.
Now in its third edition, this companion volume to Ronald Christensen's Plane Answers to Complex Questions uses three fundamental concepts from standard linear model theory-best linear prediction, projections, and Mahalanobis distance- to extend standard linear modeling into the realms of Statistical Learning and Dependent Data. This new edition features a wealth of new and revised content. In Statistical Learning it delves into nonparametric regression, penalized estimation (regularization), reproducing kernel Hilbert spaces, the kernel trick, and support vector machines. For Dependent Data it uses linear model theory to examine general linear models, linear mixed models, time series, spatial data, (generalized) multivariate linear models, discrimination, and dimension reduction. While numerous references to Plane Answers are made throughout the volume, Advanced Linear Modeling can be used on its own given a solid background in linear models. Accompanying R code for the analyses is available online.
ISBN: 9783030291648
Standard No.: 10.1007/978-3-030-29164-8doiSubjects--Topical Terms:
533190
Linear models (Statistics)
LC Class. No.: QA279 / .C47 2019
Dewey Class. No.: 519.5
Advanced linear modeling = statistical learning and dependent data /
LDR
:02835nmm a2200361 a 4500
001
2219307
003
DE-He213
005
20191222011106.0
006
m d
007
cr nn 008maaau
008
201126s2019 gw s 0 eng d
020
$a
9783030291648
$q
(electronic bk.)
020
$a
9783030291631
$q
(paper)
024
7
$a
10.1007/978-3-030-29164-8
$2
doi
035
$a
978-3-030-29164-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA279
$b
.C47 2019
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
072
7
$a
PBWL
$2
thema
082
0 4
$a
519.5
$2
23
090
$a
QA279
$b
.C554 2019
100
1
$a
Christensen, Ronald.
$3
1069707
245
1 0
$a
Advanced linear modeling
$h
[electronic resource] :
$b
statistical learning and dependent data /
$c
by Ronald Christensen.
250
$a
3rd ed.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
xxiii, 608 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer texts in statistics,
$x
1431-875X
505
0
$a
1. Nonparametric Regression -- 2. Penalized Estimation -- 3. Reproducing Kernel Hilbert Spaces -- 4. Covariance Parameter Estimation -- 5. Mixed Models and Variance Components -- 6. Frequency Analysis of Time Series -- 7. Time Domain Analysis -- 8. Linear Models for Spacial Data: Kriging -- 9. Multivariate Linear Models: General. 10. Multivariate Linear Models: Applications -- 11. Generalized Multivariate Linear Models and Longitudinal Data -- 12. Discrimination and Allocation -- 13. Binary Discrimination and Regression -- 14. Principal Components, Classical Multidimensional Scaling, and Factor Analysis -- A Mathematical Background -- B Best Linear Predictors -- C Residual Maximum Likelihood -- Index -- Author Index.
520
$a
Now in its third edition, this companion volume to Ronald Christensen's Plane Answers to Complex Questions uses three fundamental concepts from standard linear model theory-best linear prediction, projections, and Mahalanobis distance- to extend standard linear modeling into the realms of Statistical Learning and Dependent Data. This new edition features a wealth of new and revised content. In Statistical Learning it delves into nonparametric regression, penalized estimation (regularization), reproducing kernel Hilbert spaces, the kernel trick, and support vector machines. For Dependent Data it uses linear model theory to examine general linear models, linear mixed models, time series, spatial data, (generalized) multivariate linear models, discrimination, and dimension reduction. While numerous references to Plane Answers are made throughout the volume, Advanced Linear Modeling can be used on its own given a solid background in linear models. Accompanying R code for the analyses is available online.
650
0
$a
Linear models (Statistics)
$3
533190
650
1 4
$a
Probability Theory and Stochastic Processes.
$3
891080
650
2 4
$a
Computational Mathematics and Numerical Analysis.
$3
891040
650
2 4
$a
Statistical Theory and Methods.
$3
891074
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Springer texts in statistics.
$3
1567152
856
4 0
$u
https://doi.org/10.1007/978-3-030-29164-8
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9394166
電子資源
11.線上閱覽_V
電子書
EB QA279 .C47 2019
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login