Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Next-generation machine learning wit...
~
Quinto, Butch.
Linked to FindBook
Google Book
Amazon
博客來
Next-generation machine learning with Spark = Covers XGBoost, LightGBM, Spark NLP, Distributed deep learning with Keras, and more /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Next-generation machine learning with Spark/ by Butch Quinto.
Reminder of title:
Covers XGBoost, LightGBM, Spark NLP, Distributed deep learning with Keras, and more /
Author:
Quinto, Butch.
Published:
Berkeley, CA :Apress : : 2020.,
Description:
xix, 355 p. :ill., digital ;24 cm.
[NT 15003449]:
Chapter 1: Introduction to Machine Learning -- Chapter 2: Introduction to Spark and Spark Mllib -- Chapter 3: Supervised Learning -- Chapter 4: Unsupervised Learning -- Chapter 5: Recommendations -- Chapter 6: Graph Analysis -- Chapter 7: Deep Learning.
Contained By:
Springer eBooks
Subject:
Machine learning. -
Online resource:
https://doi.org/10.1007/978-1-4842-5669-5
ISBN:
9781484256695
Next-generation machine learning with Spark = Covers XGBoost, LightGBM, Spark NLP, Distributed deep learning with Keras, and more /
Quinto, Butch.
Next-generation machine learning with Spark
Covers XGBoost, LightGBM, Spark NLP, Distributed deep learning with Keras, and more /[electronic resource] :by Butch Quinto. - Berkeley, CA :Apress :2020. - xix, 355 p. :ill., digital ;24 cm.
Chapter 1: Introduction to Machine Learning -- Chapter 2: Introduction to Spark and Spark Mllib -- Chapter 3: Supervised Learning -- Chapter 4: Unsupervised Learning -- Chapter 5: Recommendations -- Chapter 6: Graph Analysis -- Chapter 7: Deep Learning.
Access real-world documentation and examples for the Spark platform for building large-scale, enterprise-grade machine learning applications. The past decade has seen an astonishing series of advances in machine learning. These breakthroughs are disrupting our everyday life and making an impact across every industry. Next-Generation Machine Learning with Spark provides a gentle introduction to Spark and Spark MLlib and advances to more powerful, third-party machine learning algorithms and libraries beyond what is available in the standard Spark MLlib library. By the end of this book, you will be able to apply your knowledge to real-world use cases through dozens of practical examples and insightful explanations. You will: Be introduced to machine learning, Spark, and Spark MLlib 2.4.x Achieve lightning-fast gradient boosting on Spark with the XGBoost4J-Spark and LightGBM libraries Detect anomalies with the Isolation Forest algorithm for Spark Use the Spark NLP and Stanford CoreNLP libraries that support multiple languages Optimize your ML workload with the Alluxio in-memory data accelerator for Spark Use GraphX and GraphFrames for Graph Analysis Perform image recognition using convolutional neural networks Utilize the Keras framework and distributed deep learning libraries with Spark.
ISBN: 9781484256695
Standard No.: 10.1007/978-1-4842-5669-5doiSubjects--Uniform Titles:
SPARK (Electronic resource)
Subjects--Topical Terms:
533906
Machine learning.
LC Class. No.: Q325.5 / .Q85 2020
Dewey Class. No.: 006.31
Next-generation machine learning with Spark = Covers XGBoost, LightGBM, Spark NLP, Distributed deep learning with Keras, and more /
LDR
:02613nmm a2200325 a 4500
001
2216627
003
DE-He213
005
20200222090415.0
006
m d
007
cr nn 008maaau
008
201120s2020 cau s 0 eng d
020
$a
9781484256695
$q
(electronic bk.)
020
$a
9781484256688
$q
(paper)
024
7
$a
10.1007/978-1-4842-5669-5
$2
doi
035
$a
978-1-4842-5669-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
$b
.Q85 2020
072
7
$a
UN
$2
bicssc
072
7
$a
COM021000
$2
bisacsh
072
7
$a
UN
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.Q7 2020
100
1
$a
Quinto, Butch.
$3
3449088
245
1 0
$a
Next-generation machine learning with Spark
$h
[electronic resource] :
$b
Covers XGBoost, LightGBM, Spark NLP, Distributed deep learning with Keras, and more /
$c
by Butch Quinto.
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2020.
300
$a
xix, 355 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Chapter 1: Introduction to Machine Learning -- Chapter 2: Introduction to Spark and Spark Mllib -- Chapter 3: Supervised Learning -- Chapter 4: Unsupervised Learning -- Chapter 5: Recommendations -- Chapter 6: Graph Analysis -- Chapter 7: Deep Learning.
520
$a
Access real-world documentation and examples for the Spark platform for building large-scale, enterprise-grade machine learning applications. The past decade has seen an astonishing series of advances in machine learning. These breakthroughs are disrupting our everyday life and making an impact across every industry. Next-Generation Machine Learning with Spark provides a gentle introduction to Spark and Spark MLlib and advances to more powerful, third-party machine learning algorithms and libraries beyond what is available in the standard Spark MLlib library. By the end of this book, you will be able to apply your knowledge to real-world use cases through dozens of practical examples and insightful explanations. You will: Be introduced to machine learning, Spark, and Spark MLlib 2.4.x Achieve lightning-fast gradient boosting on Spark with the XGBoost4J-Spark and LightGBM libraries Detect anomalies with the Isolation Forest algorithm for Spark Use the Spark NLP and Stanford CoreNLP libraries that support multiple languages Optimize your ML workload with the Alluxio in-memory data accelerator for Spark Use GraphX and GraphFrames for Graph Analysis Perform image recognition using convolutional neural networks Utilize the Keras framework and distributed deep learning libraries with Spark.
630
0 0
$a
SPARK (Electronic resource)
$3
831456
650
0
$a
Machine learning.
$3
533906
650
1 4
$a
Big Data.
$3
3134868
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-1-4842-5669-5
950
$a
Professional and Applied Computing (Springer-12059)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9391531
電子資源
11.線上閱覽_V
電子書
EB Q325.5 .Q85 2020
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login