Classical and quantum dynamics = fro...
Dittrich, Walter.

Linked to FindBook      Google Book      Amazon      博客來     
  • Classical and quantum dynamics = from classical paths to path integrals /
  • Record Type: Electronic resources : Monograph/item
    Title/Author: Classical and quantum dynamics/ by Walter Dittrich, Martin Reuter.
    Reminder of title: from classical paths to path integrals /
    Author: Dittrich, Walter.
    other author: Reuter, Martin.
    Published: Cham :Springer International Publishing : : 2020.,
    Description: x, 563 p. :ill., digital ;24 cm.
    [NT 15003449]: Introduction -- The Action Principles in Mechanics -- The Action Principle in Classical Electrodynamics -- Application of the Action Principles -- Jacobi Fields, Conjugate Points -- Canonical Transformations -- The Hamilton-Jacobi Equation -- Action-Angle Variables -- The Adiabatic Invariance of the Action Variables -- Time-Independent Canonical Perturbation Theory -- Canonical Perturbation Theory with Several Degrees of Freedom -- Canonical Adiabatic Theory -- Removal of Resonances -- Superconvergent Perturbation Theory, KAM Theorem -- Poincare Surface of Sections, Mappings -- The KAM Theorem -- Fundamental Principles of Quantum Mechanics -- Functional Derivative Approach -- Examples for Calculating Path Integrals -- Direct Evaluation of Path Integrals -- Linear Oscillator with Time-Dependent Frequency -- Propagators for Particles in an External Magnetic Field -- Simple Applications of Propagator Functions -- The WKB Approximation -- Computing the trace -- Partition Function for the Harmonic Oscillator -- Introduction to Homotopy Theory -- Classical Chern-Simons Mechanics -- Semiclassical Quantization -- The "Maslov Anomaly" for the Harmonic Oscillator -- Maslov Anomaly and the Morse Index Theorem -- Berry's Phase -- Classical Geometric Phases: Foucault and Euler -- Berry Phase and Parametric Harmonic Oscillator -- Topological Phases in Planar Electrodynamics -- Path Integral Formulation of Quantum Electrodynamics -- Particle in Harmonic E-Field E(t) = Esinw0t; Schwinger-Fock Proper-Time Method -- The Usefulness of Lie Brackets: From Classical and Quantum Mechanics to Quantum Electrodynamics -- Green's Function of a Spin-1/2 Particle in a Constant External Magnetic Field -- One-Loop Effective Lagrangian in QED -- On Riemann's Ideas on Space and Schwinger's Treatment of Low-Energy Pion-Nucleon Physics -- The Non-Abelian Vector Gauge Particle p -- Riemann's Result and Consequences for Physics and Philosophy.
    Contained By: Springer eBooks
    Subject: Quantum theory. -
    Online resource: https://doi.org/10.1007/978-3-030-36786-2
    ISBN: 9783030367862
Location:  Year:  Volume Number: 
Items
  • 1 records • Pages 1 •
 
W9391473 電子資源 11.線上閱覽_V 電子書 EB QC174.12 .D588 2020 一般使用(Normal) On shelf 0
  • 1 records • Pages 1 •
Multimedia
Reviews
Export
pickup library
 
 
Change password
Login